Onyx | CLI & Python API

CLIMB-TRE

Table of contents

Table of contents

1. CLI & Python API 3
1.1 CLI & Python API for Onyx 3
1.2 Installation 5
1.3 Accessibility 6
1.4 Command-line Interface 7
1.5 Python API 20

- 2/55 -

1. CLI & Python API

1. CLI & Python API

1.1 CLI & Python API for Onyx

1.1.1 Introduction

This is the documentation for Onyx-client, a program that provides a command-line interface and Python API for interacting with
the Onyx database.

Onyx is being developed as part of the CLIMB-TRE project.
A PDF of this documentation can be found here.

Usage: onyx [OPTIONS] COMMAND [ARGS]...

API for Pathogen Metadata.

Domain name for connecting to Onyx.
Token for authenticating with Onyx.
Username for authenticating with Onyx.
Password for authenticating with Onyx.
Show the client version number and exit.
Show this message and exit.

Authentication commands.
Admin commands.

projects View available projects.
types View available field types.
lookups View available lookups.

fields View the field specification for a project.

choices View options for a choice field in a project.

get Get a record from a project.

filter Filter multiple records from a project.

history View the history of a record in a project.

analyses View analyses of a record in a project.

identify Get the anonymised identifier for a value on a field.
create Create a record in a project.

update Update a record in a project.

delete Delete a record in a project.

analysis-fields View the analysis field specification for a project.
analysis-choices View options for an analysis choice field.
get-analysis Get an analysis from a project.

filter-analysis Filter multiple analyses from a project.
analysis-history View the history of an analysis in a project.
analysis-records View records involved in an analysis in a project.
create-analysis Create an analysis a project.

update-analysis Update an analysis in a project.

delete-analysis Delete an analysis in a project.

profile View profile information.
activity View latest profile activity.
siteusers View users from the same site.

1.1.2 Contents

Installation
Learn how to install the client, or build it manually for development.

Accessibility
Learn how to enable/disable colours in the CLI.
Command-line Interface

Getting Started
Get started with filtering data on the command-line with Onyx.

Documentation
Documentation on all command-line functionality.
Python API

OnyxClient
Documentation on the onyxclient class, used for interacting with Onyx.

https://github.com/CLIMB-TRE/onyx-client
https://github.com/CLIMB-TRE/onyx/
https://climb-tre.github.io/
/onyx-client/onyx-client.pdf

1.1.2 Contents

OnyxConfig
Documentation on the onyxconfig class, used to provide credentials to onyxclient .

OnyxEnv
Documentation on the onyxenv class, used as a shortcut to environment variable credentials.

OnyxField
Documentation on the onyxrield class, used to represent fields in an onyxclient query.

Exceptions
Documentation on the possible exceptions raised by the onyxclient .

- 4/55 -

1.2 Installation

Guidance for installing the Onyx client, or building it manually for development.

1.2 Installation

&age within CLIMB JupyterLab Servers

manually.

To revert your Onyx client to the managed up-to-date version, navigate to your terminal and run:

$ pip uninstall climb-onyx-client

And restart your JupyterLab server.

If you are running a CLIMB JupyterLab server, you do not need to install the client, as it comes pre-configured in your environment.

If you cannot see the most up-to-date version of the Onyx client, this is because you will have previously installed your own version

1.2.1 Install from conda-forge

$ conda create --name onyx --channel conda-forge climb-onyx-client

This installs the latest version of the client from conda-forge.

1.2.2 Install from PyPI
$ pip install climb-onyx-client

This installs the latest version of the client from PyPI.

1.2.3 Build from source
Clone the source code from GitHub:
$ git clone https://github.com/CLIMB-TRE/onyx-client.git
Run installation from within the source code directory:

$ cd onyx-client/
$ pip install .

Developing the Client

If you wish to develop the client, ensure you have followed the above steps to build it.

From there, you can simply modify the client code and dependencies, and rebuild by executing:

$ pip install .

- 5/55 -

https://anaconda.org/conda-forge/climb-onyx-client
https://pypi.org/project/climb-onyx-client/

1.3 Acc

1.3 Accessibility

1.3.1 Enable/disable colours in the command-line interface
Colours are enabled by default in the output of the command-line interface:

Usage: onyx [OPTIONS] COMMAND [ARGS]...

API for Pathogen Metadata.

Domain name for connecting to Onyx.
Token for authenticating with Onyx.
Username for authenticating with Onyx.
Password for authenticating with Onyx.
Show the client version number and exit.
Show this message and exit.

Authentication commands.
Admin commands.

f
projects View available projects.
types View available field types.
lookups View available lookups.

fields View the field specification for a project.

choices View options for a choice field in a project.

get Get a record from a project.

filter Filter multiple records from a project.

history View the history of a record in a project.

analyses View analyses of a record in a project.

identify Get the anonymised identifier for a value on a field.
create Create a record in a project.

update Update a record in a project.

delete Delete a record in a project.

analysis-fields View the analysis field specification for a project.
analysis-choices View options for an analysis choice field.
get-analysis Get an analysis from a project.

filter-analysis Filter multiple analyses from a project.
analysis-history View the history of an analysis in a project.
analysis-records View records involved in an analysis in a project.
create-analysis Create an analysis in a project.

update-analysis Update an analysis in a project.

delete-analysis Delete an analysis in a project.

profile View profile information.
activity View latest profile activity.
siteusers View users from the same site.

To disable them, create an environment variable onYx_coLours with the value NONE :

$ export ONYX_COLOURS=NONE

Usage: onyx [OPTIONS] COMMAND [ARGS]...

API for Pathogen Metadata.
For documentation, see: https://climb-tre.github.io/onyx-client/

Options

-domain Domain name for connecting to Onyx. [env var: ONYX_DOMAIN] [default: Nonel
Token for authenticating with Onyx. [env var: ONYX_TOKEN] [default: Nonel
Username for authenticating with Onyx. [env var: ONYX_USERNAME] [default: None]
Password for authenticating with Onyx. [env var: ONYX_PASSWORD] [default: Nonel
Show the client version number and exit.
Show this message and exit.

Commands
auth Authentication command:
adi Admin command:

Info

projects View available projects.
types View available field types.
Tookups View available lookups.

Records
fields View the field specification for a project.
View options for a choice field in a project.
Get a record from a project.
Filter multiple records from a project.
View the history of a record in a project.
View analyses of a record in a project.
identify Get the anonymised identifier for a value on a field.
create Create a record in a project.
update Update a record in a project.
delete Delete a record in a project.

Analyses

analysis-fields View the analysis field specification for a project.
analysis-choices View options for an analysis choice field.
get-analysis Get an analysis from a project.

filter-analysis Filter multiple analyses from a project.
analysis-history View the history of an analysis in a project.
analysis-records View records involved in an analysis in a project.
create-analysis Create an analysis in a project.

update-analysis Update an analysis in a project.

delete-analysis Delete an analysis in a project.

Accounts

profile View profile information.
activity View latest profile activity.
siteusers View users from the same site.

To re-enable colours, unset the environment variable:

$ unset ONYX_COLOURS

- 6/55 -

1.4 Command-line Interface

1.4 Command-line Interface

1.4.1 Getting Started
This guide walks through getting started with the Onyx-client command-line interface.
The guide assumes an environment where authentication credentials are pre-configured.

Usage: onyx [OPTIONS] COMMAND [ARGS]...

API for Pathogen Metadata.

~-~domain Domain name for connecting to Onyx.
Token for authenticating with Onyx.
Username for authenticating with Onyx.
Password for authenticating with Onyx.
Show the client version number and exit.
--help Show this message and exit.

auth Authentication commands.
admin Admin commands.

projects View available projects.
types View available field types.
lookups View available lookups.

fields View the field specification for a project.

choices View options for a choice field in a project.

get Get a record from a project.

filter Filter multiple records from a project.

history View the history of a record in a project.

analyses View analyses of a record in a project.

identify Get the anonymised identifier for a value on a field.
create Create a record in a project.

update Update a record in a project.

delete Delete a record in a project.

analysis-fields View the analysis field specification for a project.
analysis-choices View options for an analysis choice field.
get-analysis Get an analysis from a project.
filtel i Filter multiple analyses from a project.

i View the history of an analysis in a project.

View records involved in an analysis in a project.

create-analysis Create an analysis in a project.
update-analysis Update an analysis in a project.
delete-analysis Delete an analysis in a project.

profile View profile information.
activity View latest profile activity.
siteusers View users from the same site.

Profile information

$ onyx profile

Available projects

$ onyx projects

If you cannot see the project(s) that you require access to, contact an admin.

Project fields

$ onyx fields PROJECT

This returns the fields specification for the given ProJeCT .

Project data

$ onyx filter PROJECT
This returns all records from the given PROJECT .

The data can be exported to various file formats:

$ onyx filter PROJECT --format json > data.json
$ onyx filter PROJECT --format csv > data.csv
$ onyx filter PROJECT --format tsv > data.tsv

- 7/55 -

1.4.1 Getting Started

FILTERING
A project's data can be filtered to return records that match certain conditions.

Filtering on the CLI uses a field=value syntax, where field is the name of a field in the project, and value is the value you want

to match.
Multiple filters can be provided, and only the records that satisfy all these filters will be returned.
ADVANCED FILTERING USING LOOKUPS

The data can be filtered in more complex ways using lookups. These use a field.lookup=value syntax (or alternatively,
field__lookup=value), and different ones are available depending on a field's data type (e.g. text, integer). There are lookups for
searching between a range of values on a field (range), whether a field's value is empty (isnull), whether a field case-
insensitively contains some text (icontains), and more.

EXAMPLES

To filter for all records in a pProJECT published on a specific date (e.g. 2023-09-18):

$ onyx filter PROJECT --field published date=2023-09-18

To filter for all records in a pProJECT published on the current date, a special today keyword can be used:

$ onyx filter PROJECT --field published_date=today

To filter for all records in a PROJECT with a published_date from 2023-09-01 to 2023-09-18, the range lookup can be used:

$ onyx filter PROJECT --field published_date.range=2023-09-01,2023-09-18

Assuming that PrRoJECT has a sample_type field, then all records with sample_type = "swab" that were published from 2023-09-01
to 2023-09-18 can be obtained with:

$ onyx filter PROJECT --field published_date.range=2023-09-01,2023-09-18 --field sample_type=swab

Further guidance
For further guidance using Onyx-client, use the --help option.

onyx --help

onyx profile --help
onyx projects --help
onyx fields --help
onyx filter --help

® B P H B

- 8/55 -

https://climb-tre.github.io/onyx/fields/lookups/
https://climb-tre.github.io/onyx/fields/types/
https://climb-tre.github.io/onyx/fields/types/#text
https://climb-tre.github.io/onyx/fields/types/#text
https://climb-tre.github.io/onyx/fields/types/#integer
https://climb-tre.github.io/onyx/fields/types/#integer
https://climb-tre.github.io/onyx/fields/lookups/#range
https://climb-tre.github.io/onyx/fields/lookups/#range
https://climb-tre.github.io/onyx/fields/lookups/#isnull
https://climb-tre.github.io/onyx/fields/lookups/#isnull
https://climb-tre.github.io/onyx/fields/lookups/#icontains
https://climb-tre.github.io/onyx/fields/lookups/#icontains
https://climb-tre.github.io/onyx/fields/lookups/

1.4.2 onyx

API for Pathogen Metadata.

For documentation, see: https://climb-tre.github.io/onyx-client/

Usage:

$ onyx [OPTIONS] COMMAND [ARGS]...

Options:

-d, --domain TEXT : Domain name for connecting to Onyx. [env var: ONYX DOMAIN]

-t, --token TEXT : Token for authenticating with Onyx. [env var: ONYX TOKEN]

-u, --username TEXT: Username for authenticating with Onyx. [env var: ONYX USERNAME]
-p, --password TEXT : Password for authenticating with Onyx. [env var: ONYX PASSWORD]
-v, --version: Show the client version number and exit.

--help : Show this message and exit.

Commands:

projects : View available projects.

types : View available field types.

lookups : View available lookups.

fields : View the field specification for a project.

choices : View options for a choice field in a project.

get : Get a record from a project.

filter : Filter multiple records from a project.

history : View the history of a record in a project.

analyses : View analyses of a record in a project.

identify : Get the anonymised identifier for a value...
create : Create a record in a project.

update : Update a record in a project.

delete : Delete a record in a project.

analysis-fields : View the analysis field specification for...
analysis-choices : View options for an analysis choice field.
get-analysis : Get an analysis from a project.
filter-analysis : Filter multiple analyses from a project.
analysis-history : View the history of an analysis in a project.
analysis-records : View records involved in an analysis in a...
create-analysis : Create an analysis in a project.
update-analysis : Update an analysis in a project.
delete-analysis : Delete an analysis in a project.

profile : View profile information.

activity : View latest profile activity.

siteusers : View users from the same site.

auth : Authentication commands.

admin : Admin commands.

- 9/55 -

1.4.2 onyx

https://climb-tre.github.io/onyx-client/

1.4.2 onyx

onyx projects
View available projects.
Usage:
$ onyx projects [OPTIONS]
Options:

e -F, --format [table|json]: Set the file format of the returned data. [default: table]

* --help: Show this message and exit.

onyx types
View available field types.
Usage:
$ onyx types [OPTIONS]
Options:

e -F, --format [table|json]: Set the file format of the returned data. [default: table]

* --help: Show this message and exit.

onyx lookups
View available lookups.
Usage:
$ onyx lookups [OPTIONS]
Options:

e -F, --format [table|json]: Set the file format of the returned data. [default: table]

* --help: Show this message and exit.

onyx fields
View the field specification for a project.
Usage:

$ onyx fields [OPTIONS] PROJECT

Arguments:

* PROJECT : [required]

Options:

e -F, --format [table|json|csv]|tsv] : Set the file format of the returned data. [default: table]

e --help: Show this message and exit.

onyx choices
View options for a choice field in a project.

Usage:

- 10/55 -

1.4.2 onyx

$ onyx choices [OPTIONS] PROJECT FIELD

Arguments:

* PROJECT : [required]

* FIELD: [required]
Options:

e -F, --format [table|json] : Set the file format of the returned data. [default: table]

* --help: Show this message and exit.

onyx get
Get a record from a project.
Usage:

$ onyx get [OPTIONS] PROJECT [CLIMB_ID]

Arguments:

* PROJECT : [required]

e [CLIMB_ID]
Options:

e -f, --field TEXT: Filter the data by providing conditions that the fields must match. Uses a name=value syntax.
e -i, --include TEXT : Specify which fields to include in the output.
e -e, --exclude TEXT: Specify which fields to exclude from the output.

e --help: Show this message and exit.

onyx filter
Filter multiple records from a project.
Usage:

$ onyx filter [OPTIONS] PROJECT

Arguments:
* PROJECT : [required]
Options:

e -f, --field TEXT: Filter the data by providing conditions that the fields must match. Uses a name=value syntax.
e -i, --include TEXT : Specify which fields to include in the output.
e -e, --exclude TEXT: Specify which fields to exclude from the output.

* -s, --summarise TEXT : For a given field (or group of fields), return the frequency of each unique value (or unique group of
values).

e -F, --format [json|csv|tsv] : Set the file format of the returned data. [default: json]

e --help: Show this message and exit.

onyx history

View the history of a record in a project.

- 11/55 -

1.4.2 onyx

Usage:

$ onyx history [OPTIONS] PROJECT CLIMB_ID

Arguments:

* PROJECT : [required]

* CLIMB_ID: [required]
Options:

* -F, --format [table|json]: Set the file format of the returned data. [default: table]

* --help: Show this message and exit.

onyx analyses
View analyses of a record in a project.
Usage:

$ onyx analyses [OPTIONS] PROJECT CLIMB_ID

Arguments:

* PROJECT : [required]

* CLIMB_ID: [required]
Options:

* -F, --format [json|csv|tsv]: Set the file format of the returned data. [default: json]

* --help: Show this message and exit.

onyx identify
Get the anonymised identifier for a value on a field.
Usage:

$ onyx identify [OPTIONS] PROJECT FIELD VALUE

Arguments:

* PROJECT : [required]
* FIELD: [required]

* VALUE : [required]
Options:

* -s, --site TEXT: Site code for the value. If not provided, defaults to the user's site.
e -F, --format [table|json] : Set the file format of the returned data. [default: table]

e --help: Show this message and exit.

onyx create
Create a record in a project.
Usage:

$ onyx create [OPTIONS] PROJECT

- 12/55 -

1.4.2 onyx

Arguments:
* PROJECT : [required]
Options:

e -f, --field TexT: Field and value to be created. Uses a name=value syntax.
* -t, --test: Run the command as a test. [default: (False)]

* --help: Show this message and exit.

onyx update
Update a record in a project.
Usage:

$ onyx update [OPTIONS] PROJECT CLIMB_ID

Arguments:

* PROJECT : [required]

* CLIMB_ID: [required]
Options:

e -f, --field TEXT: Field and value to be updated. Uses a name=value syntax.
e -t, --test: Run the command as a test. [default: (False)]
e -c, --clear TEXT: Field to be cleared. Overrides any value provided by the --field argument.

e --help: Show this message and exit.

onyx delete
Delete a record in a project.
Usage:

$ onyx delete [OPTIONS] PROJECT CLIMB_ID

Arguments:

* PROJECT : [required]

e CLIMB_ID: [required]
Options:

e --force: Run the command without confirmation. [default: (False)]

e --help: Show this message and exit.

onyx analysis-fields
View the analysis field specification for a project.
Usage:
$ onyx analysis-fields [OPTIONS] PROJECT
Arguments:

* PROJECT : [required]

- 13/55 -

1.4.2 onyx

Options:

e -F, --format [table|json|csv|tsv]: Set the file format of the returned data. [default: table]

* --help: Show this message and exit.

onyx analysis-choices
View options for an analysis choice field.
Usage:

$ onyx analysis-choices [OPTIONS] PROJECT FIELD

Arguments:

* PROJECT : [required]

* FIELD: [required]
Options:

e -F, --format [table|json] : Set the file format of the returned data. [default: table]

e --help: Show this message and exit.

onyx get-analysis
Get an analysis from a project.
Usage:

$ onyx get-analysis [OPTIONS] PROJECT [ANALYSIS_ID]

Arguments:

* PROJECT : [required]

e [ANALYSIS ID]
Options:

e -f, --field TEXT: Filter the data by providing conditions that the fields must match. Uses a name=value syntax.
e -i, --include TEXT : Specify which fields to include in the output.
e -e, --exclude TEXT: Specify which fields to exclude from the output.

e --help: Show this message and exit.

onyx filter-analysis
Filter multiple analyses from a project.
Usage:
$ onyx filter-analysis [OPTIONS] PROJECT
Arguments:

* PROJECT : [required]

- 14/55 -

1.4.2 onyx

Options:

e -f, --field TEXT: Filter the data by providing conditions that the fields must match. Uses a name=value syntax.
e -i, --include TEXT: Specify which fields to include in the output.
* -e, --exclude TEXT: Specify which fields to exclude from the output.

e -s, --summarise TEXT : For a given field (or group of fields), return the frequency of each unique value (or unique group of
values).

* -F, --format [json|csv|tsv]: Set the file format of the returned data. [default: json]

e --help: Show this message and exit.

onyx analysis-history
View the history of an analysis in a project.
Usage:

$ onyx analysis-history [OPTIONS] PROJECT ANALYSIS_ID

Arguments:

* PROJECT : [required]

* ANALYSIS ID: [required]
Options:

e -F, --format [table|json] : Set the file format of the returned data. [default: table]

e --help: Show this message and exit.

onyx analysis-records
View records involved in an analysis in a project.
Usage:

$ onyx analysis-records [OPTIONS] PROJECT ANALYSIS_ID

Arguments:

* PROJECT : [required]

* ANALYSIS ID: [required]
Options:

* -F, --format [json|csv|tsv]: Set the file format of the returned data. [default: json]

* --help: Show this message and exit.

onyx create-analysis
Create an analysis in a project.
Usage:
$ onyx create-analysis [OPTIONS] PROJECT
Arguments:

* PROJECT : [required]

- 15/55 -

1.4.2 onyx

Options:

e -f, --field TexT: Field and value to be created. Uses a name=value syntax.
e -t, --test: Run the command as a test. [default: (False)]

e --help: Show this message and exit.

onyx update-analysis
Update an analysis in a project.
Usage:

$ onyx update-analysis [OPTIONS] PROJECT ANALYSIS_ID

Arguments:

* PROJECT : [required]

* ANALYSIS_ ID: [required]
Options:

e -f, --field TEXT: Field and value to be updated. Uses a name=value syntax.
e -t, --test: Run the command as a test. [default: (False)]
e -c, --clear TEXT: Field to be cleared. Overrides any value provided by the --field argument.

e --help: Show this message and exit.

onyx delete-analysis
Delete an analysis in a project.
Usage:

$ onyx delete-analysis [OPTIONS] PROJECT ANALYSIS_ID

Arguments:

* PROJECT : [required]

* ANALYSIS_ID: [required]
Options:

¢ --force: Run the command without confirmation. [default: (False)]

e --help: Show this message and exit.

onyx profile
View profile information.
Usage:

$ onyx profile [OPTIONS]
Options:

e -F, --format [table|json] : Set the file format of the returned data. [default: table]

e --help: Show this message and exit.

- 16/55 -

1.4.2 onyx

onyx activity
View latest profile activity.
Usage:

$ onyx activity [OPTIONS]
Options:

e -F, --format [table|json]: Set the file format of the returned data. [default: table]

* --help: Show this message and exit.

onyx siteusers
View users from the same site.
Usage:

$ onyx siteusers [OPTIONS]
Options:

e -F, --format [table|json]: Set the file format of the returned data. [default: table]

* --help: Show this message and exit.

onyx auth
Authentication commands.
Usage:

$ onyx auth [OPTIONS] COMMAND [ARGS]...
Options:

e --help: Show this message and exit.
Commands:

* register : Create a new user.
* login: Log in.
* logout : Log out.

* logoutall: Log out across all clients.
onyx auth register
Create a new user.
Usage:
$ onyx auth register [OPTIONS]
Options:
e --help: Show this message and exit.
onyx auth login
Log in.

Usage:

-17/55 -

1.4.2 onyx

$ onyx auth login [OPTIONS]
Options:

* --help: Show this message and exit.

onyx auth logout

Log out.

Usage:

$ onyx auth logout [OPTIONS]

Options:

* --help: Show this message and exit.
onyx auth logoutall

Log out across all clients.

Usage:

$ onyx auth logoutall [OPTIONS]
Options:

e --help: Show this message and exit.

onyx admin
Admin commands.
Usage:

$ onyx admin [OPTIONS] COMMAND [ARGS]...
Options:

* --help: Show this message and exit.
Commands:

* waiting: View users waiting for approval.
* approve : Approve a user.

e allusers: View users across all sites.

onyx admin waiting
View users waiting for approval.
Usage:
$ onyx admin waiting [OPTIONS]
Options:

e -F, --format [table|json] : Set the file format of the returned data. [default: table]

e --help: Show this message and exit.

onyx admin approve

Approve a user.

- 18/55 -

1.4.2 onyx

Usage:

$ onyx admin approve [OPTIONS] USERNAME

Arguments:
e USERNAME : Name of the user being approved. [required]
Options:
e --help: Show this message and exit.
onyx admin allusers
View users across all sites.
Usage:
$ onyx admin allusers [OPTIONS]
Options:

e -F, --format [table|json] : Set the file format of the returned data. [default: table]

* --help: Show this message and exit.

- 19/55 -

1.5 Python API

1.5 Python API
1.5.1 OnyxClient

Class for querying and manipulating data within Onyx.
__init__ (config)

Initialise a client.

PARAMETER DESCRIPTION

config onyxconfig object that stores information for connecting and authenticating with Onyx.

TYPE: onyxconfig

Examples:

The recommended way to initialise a client (as a context manager):

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
pass # Do something with the client here

Alternatively, the client can be initialised as follows:
import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient
config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

client = OnyxClient(config)
Do something with the client here

.-

* When making multiple requests, using the client as a context manager can improve performance.

« This is due to the fact that the client will re-use the same session for all requests, rather than creating a new session for each
request.

« For more information, see: https://requests.readthedocs.io/en/master/user/advanced/#session-objects

projects()

View available projects.

RETURNS DESCRIPTION
List[Dict[str, str]] List of projects.
Examples:
import os

from onyx import OnyxConfig, OnyxEnv, OnyxClient

- 20/55 -

https://requests.readthedocs.io/en/master/user/advanced/#session-objects

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

with OnyxClient(config) as client:
projects = client.projects()

>>> projects

[

"project": "project_1",
"scope": "admin",
"actions": [

"get",

"list”,

"filter",

"add",

"change",

"delete",

"project": "project_2",
"scope": "analyst",
"actions": [
"get",
"ist",
"filter",
1,
}

types()

View available field types.

RETURNS DESCRIPTION
List[Dict[str, Any]] List of field types.
Examples:
import os

from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

with OnyxClient(config) as client:
field_types = client.types()

>>> field_types
[

"type": "text",
"description": "A string of characters.",
"lookups": [
"exact",
"ne",
nin",
"notin",
"contains",
"startswith",
"endswith",
"iexact",
"icontains",
"istartswith",
"iendswith",
"length",
"length__in",
"length__range",
"isnull",

"type": "choice",
"description": "A restricted set of options.",
"lookups": [

"exact",

"ne",

"in",

"notin",

"isnull",

- 21/55 -

1.5.1 OnyxClient

1.5.1 OnyxClient

h

Tlookups()

View available lookups.

RETURNS DESCRIPTION
List[Dict[str, Any]] List of lookups.
Examples:
import os

from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
lookups = client. lookups()

>>> lookups
[
{
"lookup": "exact",
"description": "The field's value must be equal to the query value.",
"types": [
"text",
"choice",
"integer",
"decimal",
"date",
"datetime",
"bool",

"lookup": "ne",
"description": "The field's value must not be equal to the query value."
"types": [

"text",

"choice",

"integer",

"decimal",

"date",

"datetime",

"bool",

h

fields(project)

View fields for a project.

PARAMETER DESCRIPTION
project Name of the project.
TYPE: str
RETURNS DESCRIPTION
Dict[str, Any] Dict of fields.
Examples:
import os

from onyx import OnyxConfig, OnyxEnv, OnyxClient
config = OnyxConfig(

domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

- 22/55 -

1.5.1 OnyxClient

with OnyxClient(config) as client:
fields = client.fields("project")

>>> fields
{
"name": "Project Name",
"description": "Project description.",
"object_type": "records",
"version": "0.1.0",
"fields": {
"climb_id": {
"description": "Unique identifier for a project record in Onyx.",
"type": "text",
"required": True,
"actions": [
"get",
"list",
"filter",
1,
"restrictions": [
"Max length: 12",
1,
i
"is_published": {
"description": "Indicator for whether a project record has been published.",
"type": "bool",
"required": False,
"actions": [
"get",
"list",
"filter",
"add",
"change",
1,
"default": True,
}
"published_date": {
"description": "The date the project record was published in Onyx.",
"type": "date (YYYY-MM-DD)",
"required": False,
"actions": [
"get",
"list",
"filter",
1,
3
"country": {
"description": "Country of origin.",
"type": "choice",
"required": False,
"actions": [
"get",
"list",
"filter",
"add",
"change",

1.

"values": [
"ENG",
"WALES",
ESCOTN
"NIY,

3
3

- 23/55 -

choices(project, field)

View choices for a field.

PARAMETER

project

field

RETURNS

DESCRIPTION

Name of the project.

TYPE: str

Choice field on the project.

TYPE: str

Dict[str, Dict[str, Any]]

Examples:

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:

choices = client.choices("project",

>>> choices

{

"ENG": {

"description":
: True,

"is_active"

h
"WALES": {

"description":
: True,

"is_active"

iy
"SCOT": {

"description":
: True,

"is_active"

4
NI g

"description":
: True,

"is_active"

h

"England",

"wales",

"Scotland",

"Northern Ireland",

DESCRIPTION

Dictionary mapping choices to information about the choice.

"country")

- 24/55 -

1.5.1 OnyxClient

get(project, climb_id=None, fields=None, include=None, exclude=None)

Get a record from a project.

PARAMETER DESCRIPTION
project Name of the project.
TYPE: str
climb_id Unique identifier for the record.

TYPE: optional[str]

fields Dictionary of field filters used to uniquely identify the record.

TYPE: optional[Dict[str, Any]]
include Fields to include in the output.

TYPE: union[List[str], str, None]
exclude Fields to exclude from the output.

TYPE: union[List[str], str, None]

RETURNS DESCRIPTION
Dict[str, Any] Dict containing the record.
Examples:

Get a record by CLIMB ID:

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
record = client.get("project", "C-1234567890")

>>> record

{
"climb_id": "C-1234567890",
"published_date": "2023-01-01"
"field1": "valuel",
"field2": "value2",

}

Get a record by fields that uniquely identify it:

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
record = client.get(
"project",
fields={
"field1": "valuel",
"field2": "value2"

h

>>> record

"climb_id": "C-1234567890",
"published_date": "2023-01-01"

DEFAULT: None

DEFAULT: None

DEFAULT: None

DEFAULT: None

- 25/55 -

1.5.1 OnyxClient

1.5.1 OnyxClient

"field1": "valuel",
"field2": "value2",

The include and exclude arguments can be used to control the fields returned:

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:

record_vl = client.get(
"project",
climb_id="C-1234567890",
include=["climb_id", "published_date"],

)

record_v2 = client.get(
"project",
climb_id="C-1234567890",
exclude=["field2"],

>>> record_vi

{
"climb_id": "C-1234567890",
"published_date": "2023-01-01",
}
>>> record_v2
{
"climb_id": "C-1234567890",
"published_date": "2023-01-01",
"field1": "valuel",
}
S VvV

¢ Including/excluding fields to reduce the size of the returned data can improve performance.

- 26/55 -

1.5.1 OnyxClient

filter(project, fields=None, include=None, exclude=None, summarise=None, **kwargs)

Filter records from a project.

PARAMETER DESCRIPTION
project Name of the project.

TYPE: str
fields Dictionary of field filters.

TYPE: optional[Dict[str, Any]] DEFAULT: nNone
include Fields to include in the output.

TYPE: union[List[str], str, None] DEFAULT: nNone
exclude Fields to exclude from the output.

TYPE: union[List[str], str, None] DEFAULT: None
summarise For a given field (or group of fields), return the frequency of each unique value (or unique group of

values).

TYPE: union[List[str], str, None] DEFAULT: nNone
**kwargs Additional keyword arguments are interpreted as field filters.

TYPE: Any DEFAULT: {}
RETURNS DESCRIPTION
None Generator of records. If a summarise argument is provided, each record will be a dict containing values of

the summary fields and a count for the frequency.

ites v

 Field filters specify requirements that the returned data must satisfy. They can be provided as keyword arguments, or as a dictionary
to the fields argument.

¢ These filters can be a simple match on a value (e.g. "published_date" : "2023-01-01"), or they can use a 'lookup' for more complex
matching conditions (e.g. "published_date iso_year" : "2023").

¢ Multi-value lookups (e.g. in, range) can also be used. For keyword arguments, multiple values can be provided as a Python list. For
the fields dictionary, multiple values must be provided as a comma-separated string (see examples below).

Examples:
Retrieve all records that match a set of field requirements:

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

Field conditions can either be provided as keyword arguments:
with OnyxClient(config) as client:
records = list(
client.filter(
project="project",
field1i="abcd",
published_date__range=["2023-01-01", "2023-01-02"],

)
Or as a dictionary to the 'fields' argument:

with OnyxClient(config) as client:
records = list(

- 27/55 -

client.filter(

project="project",

fields={

"field1": "abcd",

"published_date__range" : "2023-01-01, 2023-01-02",
3

>>> records

[

"climb_id": "C-1234567890",

"2023-01-01",

"climb_id": "C-1234567891",

{
"published_date":
"field1": "abcd",
"field2": 123,

}

{
"published_date":
"field1": "abcd",
"field2": 456,

}

"2023-01-02",

1.5.1 OnyxClient

The summarise argument can be used to return the frequency of each unique value for a given field, or the frequency of each

unique set of values for a group of fields:

import os

from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(

domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:

records_vl = list(
client.filter(

project="project",

field1i="abcd",

published_date__range=["2023-01-01", "2023-01-02"],
summarise="published_date",

)

records_v2 = list(
client.filter(
project="

project",
field1="abcd",

published_date__range=["2023-01-01", "2023-01-02"],
summarise=["published_date", "field2"],

>>> records_vil

[

{
"published_date": "2023-01-01",
"count": 1,
3
{
"published_date": "2023-01-02",
"count": 1,
3
]
>>> records_v2
[
{
"published_date": "2023-01-01",
"field2": 123,
"count": 1,
3
{
"published_date": "2023-01-02",
"field2": 456,
"count": 1,
}

query(project, query=None, include=None, exclude=None, summarise=None)

Query records from a project.

- 28/55 -

1.5.1 OnyxClient

This method supports more complex filtering than the onyxclient.filter method. Here, filters can be combined using Python's
bitwise operators, representing AND, OR, XOR and NOT operations.

PARAMETER DESCRIPTION
project Name of the project.

TYPE: str
query onyxField object representing the query being made.

TYPE: optional[OnyxField] DEFAULT: nNone
include Fields to include in the output.

TYPE: union[List[str], str, None] DEFAULT: None
exclude Fields to exclude from the output.

TYPE: union[List[str], str, None] DEFAULT: nNone
summarise For a given field (or group of fields), return the frequency of each unique value (or unique group of

values).

TYPE: union[List[str], str, None] DEFAULT: None
RETURNS DESCRIPTION
None Generator of records. If a summarise argument is provided, each record will be a dict containing values of

the summary fields and a count for the frequency.

ites v

¢ The query argument must be an instance of onyxrield .

¢ onyxField instances can be combined into complex expressions using Python's bitwise operators: & (AND), | (OR), » (XOR), and ~
(NOT).

¢ Multi-value lookups (e.g. in, range) support passing a Python list (see example below).

Examples:
Retrieve all records that match the query provided by an onyxField object:

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient, OnyxField

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
records = list(
client.query(

project="project",

query=(
OnyxField(field1="abcd")
& OnyxField(published_date__range=["2023-01-01", "2023-01-02"])

)i

>>> records

[

{
"climb_id": "C-1234567890"
"published_date": "2023-01-01"
"field1": "abcd",
"field2": 123,

}

"climb_id": "C-1234567891"

- 29/55 -

1.5.1 OnyxClient

"published_date": "2023-01-02"
"field1": "abcd",
"field2": 456,

}

to_csv(csv_file, data, delimiter=None) classmethod

Write a set of records to a CSV file.

PARAMETER DESCRIPTION
csv_file File object for the CSV file being written to.
TYPE: TextIO
data The data being written to the CSV file. Must be either a list / generator of dict records.

TYPE: union[List[Dict[str, Any]], Generator[Dict[str, Any], Any, None]]

delimiter CSV delimiter. If not provided, defaults to "," for CSVs. Set this to "\t" to work with TSV files.
TYPE: optional[str] DEFAULT: None
Examples:
import os

from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client, open("/path/to/file.csv") as csv_file:
client.to_csv(
csv_file=csv_file,
data=client.filter(
"project",
fields={
"field1": "valuel"
"field2": "value2"
}

history(project, climb_id)

View the history of a record in a project.

PARAMETER DESCRIPTION
project Name of the project.
TYPE: str
climb_id Unique identifier for the record.
TYPE: str
RETURNS DESCRIPTION
Dict[str, Any] Dict containing the history of the record.
Examples:
import os

from onyx import OnyxConfig, OnyxEnv, OnyxClient
config = OnyxConfig(

domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

- 30/55 -

with OnyxClient(config) as client:
history = client.history("project", "C-1234567890")

>>> history

{
"climb_id": "C-1234567890",
"history": [
{
"username": "user",
"timestamp": "2023-01-01T00:00:00Z",
"action": "add",
i
{
"username "user",
"timestamp": "2023-01-02T00:00:00Z"
"action": "change",
"changes": [
{
"field": "field_ 1"
"type": "text",
"from": "valuel",
"to": "value2",
}
{
"field": "field_2",
"type": "integer"
"from": 3,
"to": 4,
3
{
"field": "nested_field"
"type": "relation"
"action": "add",
"count" : 3,
}
{
"field": "nested_field"
"type": "relation"
"action": "change",
"count" : 10,
3
1
3
1,
}

analyses(project, climb_id)

View the analyses of a record in a project.

PARAMETER DESCRIPTION
project Name of the project.
TYPE: str
climb_id Unique identifier for the record.
TYPE: str
RETURNS DESCRIPTION
List[Dict[str, Any]] List of Dicts containing basic details of each analysis of the record.
Examples:
import os

from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
analyses = client.analyses("project", "C-1234567890")

>>> analyses
[
{
"analysis_id": "A-1234567890",
"published_date": "2023-02-01"

- 31/55 -

1.5.1 OnyxClient

"analysis_date": "2023-01-01",

"site": "site",

"name": "First Analysis",
"report": "s3://analysis_1.html",
"outputs": "s3://analysis_1_outputs/",

"analysis_id": "A-0987654321",
'2024-02-01",
'2023-01-01",

"published_date":
"analysis_date":
"site": "site",

"name": "Second Analysis",
"report": "s3://analysis_2.html",
"outputs": "s3://analysis_2 outputs/",

}

identify(project, field, value, site=None)

Get the anonymised identifier for a value on a field.

PARAMETER

project

field

value

site

RETURNS

Dict[str, str]

Examples:

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

con

)

fig = OnyxConfig(

DESCRIPTION

Name of the project.

TYPE:

str

Field on the project.

TYPE:

str

Value to identify.

TYPE:

Site to identify the value on. If not provided, defaults to the user's site.

TYPE:

str

Optional[str]

DESCRIPTION

Dict containing the project, site, field, value and anonymised identifier.

domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

with OnyxClient(config) as client:
identification = client.identify("project", "sample_id",

identification

"project": "project",
"site": "site",
"field": "sample_id",
"value": "hidden-value",

"identifier": "S-1234567890",

"hidden-value")

- 32/55 -

DEFAULT: None

1.5.1 OnyxClient

1.5.1 OnyxClient

create(project, fields, test=False)

Create a record in a project.

PARAMETER DESCRIPTION
project Name of the project.
TYPE: str
fields Object representing the record to be created.

TYPE: pict[str, Any]

test If True, runs the command as a test. Default: False
TYPE: bool DEFAULT: False
RETURNS DESCRIPTION
Dict[str, Any] Dict containing the CLIMB ID of the created record.
Examples:
import os

from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
result = client.create(
"project",
fields={
"field1": "valuel"
"field2": "value2",
3

>>> result
{"climb_id": "C-1234567890"}

- 33/55 -

update(project, climb_id, fields=None, test=False, clear=None)

Update a record in a project.

PARAMETER DESCRIPTION
project Name of the project.
TYPE: str
climb_id Unique identifier for the record.
TYPE: str
fields Object representing the record to be updated.
TYPE: optional[Dict[str, Any]] DEFAULT: None
test If True, runs the command as a test. Default: False
TYPE: bool DEFAULT: False
clear List of fields to be cleared. Overrides any values provided in fields .
TYPE: union[List[str], str, None] DEFAULT: nNone
RETURNS DESCRIPTION

Dict[str, Any]

Dict containing the CLIMB ID of the updated record.

Examples:

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
result = client.update(
project="project",
climb_id="C-1234567890",
fields={
"field1": "valuel",
"field2": "value2"
}
clear=["field3", "field4"],

>>> result
{"climb_id": "C-1234567890"}

delete(project, climb_id)

Delete a record in a project.

PARAMETER DESCRIPTION
project Name of the project.
TYPE: str
climb_id Unique identifier for the record.
TYPE: str
RETURNS DESCRIPTION
Dict[str, Any] Dict containing the CLIMB ID of the deleted record.

- 34/55 -

1.5.1 OnyxClient

Examples:

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
result = client.delete(
project="project",
climb_id="C-1234567890",

>>> result
{"climb_id": "C-1234567890"}

csv_create(project, csv_file, fields=None, delimiter=None, multiline=False, test=False)

Use a CSV file to create record(s) in a project.

PARAMETER DESCRIPTION
project Name of the project.
TYPE: str
csv_file File object for the CSV file being used for record upload.

TYPE: TextIo

1.5.1 OnyxClient

fields Additional fields provided for each record being uploaded. Takes precedence over fields in the CSV.

TYPE: optional[Dict[str, Any]]

DEFAULT: nNone

delimiter CSV delimiter. If not provided, defaults to "," for CSVs. Set this to "\t" to work with TSV files.

TYPE: optional[str]

multiline If True, allows processing of CSV files with more than one record. Default: False
TYPE: bool
test If True, runs the command as a test. Default: False
TYPE: bool
RETURNS DESCRIPTION
Union[Dict[str, Any], Dict containing the CLIMB ID of the created record. If multiline
List[Dict[str, Any]]l] dicts containing the CLIMB ID of each created record.
Examples:

Create a single record:

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client, open("/path/to/file.csv") as csv_file:

result = client.csv_create(
project="project",
csv_file=csv_file,

>>> result
{"climb_id": "C-1234567890"}

- 35/55 -

DEFAULT: nNone

DEFAULT: False

DEFAULT: Fralse

True , returns a list of

1.5.1 OnyxClient

Create multiple records:

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client, open("/path/to/file.csv") as csv_file:
results = client.csv_create(
project="project",
csv_file=csv_file,
multiline=True,

>>> results

[
{"climb_id": "C-1234567890"},
{"climb_id": "C-1234567891"},
{"climb_id": "C-1234567892"},

csv_update(project, csv_file, fields=None, delimiter=None, multiline=False, test=False)

Use a CSV file to update record(s) in a project.

PARAMETER DESCRIPTION
project Name of the project.
TYPE: str
csv_file File object for the CSV file being used for record upload.

TYPE: TextIo

fields Additional fields provided for each record being uploaded. Takes precedence over fields in the CSV.
TYPE: optional[Dict[str, Any]] DEFAULT: nNone
delimiter CSV delimiter. If not provided, defaults to "," for CSVs. Set this to "\t" to work with TSV files.
TYPE: optional[str] DEFAULT: None
multiline If True, allows processing of CSV files with more than one record. Default: False
TYPE: bool DEFAULT: False
test If True, runs the command as a test. Default: False
TYPE: bool DEFAULT: False
RETURNS DESCRIPTION
Union[Dict[str, Any], Dict containing the CLIMB ID of the updated record. If multiline = True, returns a list of
List[Dict[str, Any]]l] dicts containing the CLIMB ID of each updated record.
Examples:

Update a single record:

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)
with OnyxClient(config) as client, open("/path/to/file.csv") as csv_file:

result = client.csv_update(
project="project",

- 36/55 -

1.5.1 OnyxClient

csv_file=csv_file,

>>> result
{"climb_id": "C-1234567890"}

Update multiple records:

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client, open("/path/to/file.csv") as csv_file:
results = client.csv_update(
project="project",
csv_file=csv_file,
multiline=True,

>>> results

[
{"climb_id": "C-1234567890"},
{"climb_id": "C-1234567891"},
{"climb_id": "C-1234567892"},

csv_delete(project, csv_file, delimiter=None, multiline=False)

Use a CSV file to delete record(s) in a project.

PARAMETER DESCRIPTION
project Name of the project.
TYPE: str
csv_file File object for the CSV file being used for record upload.

TYPE: TextIo

delimiter CSV delimiter. If not provided, defaults to "," for CSVs. Set this to "\t" to work with TSV files.
TYPE: optional[str] DEFAULT: None
multiline If True, allows processing of CSV files with more than one record. Default: False
TYPE: bool DEFAULT: ralse
RETURNS DESCRIPTION
Union[Dict[str, Any], Dict containing the CLIMB ID of the deleted record. If multiline = True, returns a list of
List[Dict[str, Any]]] dicts containing the CLIMB ID of each deleted record.
Examples:

Delete a single record:

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client, open("/path/to/file.csv") as csv_file:
result = client.csv_delete(
project="project",
csv_file=csv_file,

- 37/55 -

1.5.1 OnyxClient

>>> result
{"climb_id": "C-1234567890"}

Delete multiple records:

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client, open("/path/to/file.csv") as csv_file:
results = client.csv_delete(
project="project",
csv_file=csv_file,
multiline=True,

>>> results

[
{"climb_id": "C-1234567890"},
{"climb_id": "C-1234567891"},
{"climb_id": "C-1234567892"},

analysis_fields(project)

View analysis fields.

PARAMETER DESCRIPTION
project Name of the project.
TYPE: str
RETURNS DESCRIPTION
Dict[str, Any] Dict of fields.
Examples:
import os

from onyx import OnyxConfig, OnyxEnv, OnyxClient
config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],

token=o0s.environ[OnyxEnv.TOKEN],
)

with OnyxClient(config) as client:
fields = client.analysis_fields("project")

analysis_choices(project, field)

View choices for an analysis field.

PARAMETER DESCRIPTION
project Name of the project.
TYPE: str
field Analysis choice field.
TYPE: str
RETURNS DESCRIPTION
Dict[str, Dict[str, Any]] Dictionary mapping choices to information about the choice.

- 38/55 -

Examples:

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
choices = client.analysis_choices("project", "country")

get_analysis(project, analysis_id=None, fields=None, include=None, exclude=None)

Get an analysis from a project.

PARAMETER

project

analysis_id

fields

include

exclude

RETURNS

Dict[str, Any]

Examples:

DESCRIPTION

Name of the project.

TYPE: str

Unique identifier for the analysis.

TYPE: optional[str] DEFAULT: nNone

Dictionary of field filters used to uniquely identify the record.

TYPE: optional[Dict[str, Any]] DEFAULT: None
Fields to include in the output.

TYPE: union[List[str], str, None] DEFAULT: None
Fields to exclude from the output.

TYPE: union[List[str], str, None] DEFAULT: nNone

DESCRIPTION

Dict containing the record.

Get an analysis by analysis ID:

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
analysis = client.get_analysis("project", "A-1234567890")

>>> analysis

{

"analysis_id": "A-1234567890"

"published_date":

"2023-01-01",

"name": "Very cool analysis"
"result": "Found very cool things"

- 39/55 -

1.5.1 OnyxClient

1.5.1 OnyxClient

filter_analysis(project, fields=None, include=None, exclude=None, summarise=None, **kwargs)

Filter analyses from a project.

PARAMETER DESCRIPTION
project Name of the project.

TYPE: str
fields Dictionary of field filters.

TYPE: optional[Dict[str, Any]] DEFAULT: nNone
include Fields to include in the output.

TYPE: union[List[str], str, None] DEFAULT: nNone
exclude Fields to exclude from the output.

TYPE: union[List[str], str, None] DEFAULT: None
summarise For a given field (or group of fields), return the frequency of each unique value (or unique group of

values).

TYPE: union[List[str], str, None] DEFAULT: nNone
**kwargs Additional keyword arguments are interpreted as field filters.

TYPE: Any DEFAULT: {}
RETURNS DESCRIPTION
None Generator of analyses. If a summarise argument is provided, each record will be a dict containing values

of the summary fields and a count for the frequency.

Examples:
Retrieve all analyses that match a set of field requirements:

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
analyses = list(
client.filter_analysis(
project="project",
published_date__range=["2023-01-01", "2023-01-02"],

>>> analyses

[

{
"analysis_id": "A-1234567890",
"published_date": "2023-01-01"
"name": "Very cool analysis",
"result": "Found very cool things",
3
{
"analysis_id": "A-1234567891"
"published_date": "2023-01-02"
"name": "Not so cool analysis"
"result": "Found not so cool things"
}

-40/55 -

1.5.1 OnyxClient

S v

* See the documentation for the filter method for more information on filtering records, as this also applies to analyses.

analysis_history(project, analysis_id)

View the history of an analysis in a project.

PARAMETER DESCRIPTION
project Name of the project.
TYPE: str
analysis_id Unique identifier for the analysis.
TYPE: str
RETURNS DESCRIPTION
Dict[str, Any] Dict containing the history of the analysis.
Examples:
import os

from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
history = client.analysis_history("project", "A-1234567890")

>>> history

{
"analysis_id": "A-1234567890",
"history": [
{
"username": "user",
"timestamp": "2023-01-01T00:00:00Z",
"action": "add",
3
{
"username": "user",
"timestamp": "2023-01-02T00:00:00Z",
"action": "change",
"changes": [
{
"field": "name",
"type" text",
"from": "Cool analysis",
"to": "Very cool analysis",
}
1,
3
1,
}

-41/55 -

1.5.1 OnyxClient

analysis_records(project, analysis_id)

View the records involved in an analysis in a project.

PARAMETER DESCRIPTION
project Name of the project.
TYPE: str
analysis_id Unique identifier for the analysis.
TYPE: str
RETURNS DESCRIPTION
List[Dict[str, Any]] List of Dicts containing basic details of each record involved in the analysis.
Examples:
import os

from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:

records = client.analysis_records("project", "A-1234567890")

>>> records

[

{
"climb_id": "C-1234567890",
"published_date": "2023-01-01"
"site": "site_1",

}

{
"climb_id": "C-1234567891",
"published_date": "2023-01-02"
"site": "site 2"

}

create_analysis(project, fields, test=False)

Create an analysis in a project.

PARAMETER DESCRIPTION
project Name of the project.
TYPE: str
fields Object representing the analysis to be created.

TYPE: pict[str, Any]

test If True, runs the command as a test. Default: False
TYPE: bool DEFAULT: False
RETURNS DESCRIPTION
Dict[str, Any] Dict containing the Analysis ID of the created analysis.
Examples:
import os

from onyx import OnyxConfig, OnyxEnv, OnyxClient

-42/55 -

1.5.1 OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
result = client.create_analysis(

"project",
fields={
"name": "Absolutely incredible analysis",
"result": "Insane results"
}
)
>>> result

{"analysis_id": "A-1234567890"}

update_analysis(project, analysis_id, fields=None, test=False, clear=None)

Update an analysis in a project.

PARAMETER DESCRIPTION
project Name of the project.
TYPE: str
analysis_id Unique identifier for the analysis.
TYPE: str
fields Object representing the analysis to be updated.
TYPE: optional[Dict[str, Any]] DEFAULT: None
test If True, runs the command as a test. Default: False
TYPE: bool DEFAULT: False
clear List of fields to be cleared. Overrides any values provided in fields .
TYPE: union[List[str], str, None] DEFAULT: nNone
RETURNS DESCRIPTION
Dict[str, Any] Dict containing the Analysis ID of the updated analysis.
Examples:
import os

from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
result = client.update_analysis(
project="project",
analysis_id="A-1234567890",
fields={
"result": "The results were even more insane"
}

clear=["report"],

>>> result
{"analysis_id": "A-1234567890"}

- 43/55 -

delete_analysis(project, analysis_id)

Delete an analysis in a project.

PARAMETER

project

analysis_id

RETURNS

Dict[str, Any]

Examples:

import os

DESCRIPTION

Name of the project.

TYPE: str

Unique identifier for the analysis.

TYPE: str

DESCRIPTION

Dict containing the Analysis ID of the deleted analysis.

from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(

domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
result = client.delete_analysis(

project="project",

analysis_id="A-1234567890",

>>> result

{"analysis_id": "A-1234567890"}

- 44/55 -

1.5.1 OnyxClient

register(domain, first_name, last_name, email, site, password) classmethod

Create a new user.

PARAMETER

domain

first_name

last_name

email

site

password

RETURNS

Dict[str, Any]

DESCRIPTION
Name of the domain.
TYPE: str

First name of the user.
TYPE: str

Last name of the user.
TYPE: str

Email address of the user.
TYPE: str

Name of the site.
TYPE: str

Password for the user.

TYPE: str

DESCRIPTION

Dict containing the user's information.

Examples:

import os
from onyx import OnyxClient, OnyxEnv

registration = OnyxClient.register(
domain=o0s.environ[OnyxEnv.DOMAIN],
first_name="Bill",
last_name="will",
email="bill@email.com",
site="site",
password="pass123",

>>> registration

{
"username": "onyx-willb"
"site": "site",
"email": "bill@email.com"
"first_name": "Bill"
"last_name": "will"

}

login()

Log in the user.

RETURNS DESCRIPTION
Dict[str, Any] Dict containing the user's authentication token and it's expiry.
Examples:
import os

from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],

-45/55 -

1.5.1 OnyxClient

username=o0s.environ[OnyxEnv.USERNAME],
password=o0s.environ[0OnyxEnv.PASSWORD],

with OnyxClient(config) as client:
token = client.login()

>>> token

{
"expiry": "2024-01-01T00:00:00.000000Z",

"token": "abc123",
logout ()
Log out the user.
Examples:

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

with OnyxClient(config) as client:
client. logout()

logoutall()
Log out the user in all clients.
Examples:

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

with OnyxClient(config) as client:
client. logoutall()

profile()

View the user's information.

RETURNS DESCRIPTION
Dict[str, str] Dict containing the user's information.
Examples:
import os

from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

with OnyxClient(config) as client:
profile = client.profile()

>>> profile

"username": "user"
"site": "site",
"email": "user@email.com",

-46/55 -

1.5.1 OnyxClient

activity()

View the user's latest activity.

RETURNS DESCRIPTION
List[Dict[str, Any]] List of the user's latest activity.
Examples:
import os

from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)
with OnyxClient(config) as client:

activity = client.activity()

>>> activity

[

{
"date": "2023-01-01T00:00:00.000000Z"
"address": "127.0.0.1"
"endpoint": "/projects/project/"
"method": "POST",
"status": 400,
"exec_time": 29,
"error_messages" : "b'{"status":"fail", "code":400, "messages"

}

{
"timestamp": "2023-01-02T00:00:00.000000Z"
"address": "127.0.0.1"
"endpoint": "/accounts/activity/",
"method": "GET"
"status": 200,
"exec_time": 22,
"error_messages":

}

]
approve(username)

Approve another user.

:{"site":["Select a valid choice."]1}}'",

PARAMETER DESCRIPTION
username Username of the user to be approved.
TYPE: str
RETURNS DESCRIPTION
Dict[str, Any] Dict confirming user approval success.
Examples:
import os

from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
approval = client.approve("waiting_ user")

>>> approval

{
"username": "waiting_user",
"is_approved": True,

-47/55 -

1.5.1 OnyxClient

1.5.1 OnyxClient

waiting()

Get users waiting for approval.

RETURNS DESCRIPTION
List[Dict[str, Any]] List of users waiting for approval.
Examples:
import os

from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
users = client.waiting()

>>> users
"username": "waiting_user"
"site": "site",
"email": "waiting_user@email.com",

"date_joined": "2023-01-01T00:00:00.000000Z",

site_users()

Get users within the site of the requesting user.

RETURNS DESCRIPTION
List[Dict[str, Any]] List of users within the site of the requesting user.
Examples:
import os

from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config):
users = client.site_users()

>>> users
"username": "user",
"site": "site",
"email": "user@email.com"

all_users()

Get all users.

RETURNS DESCRIPTION
List[Dict[str, Any]] List of all users.
Examples:
import os

from onyx import OnyxConfig, OnyxEnv, OnyxClient

- 48/55 -

1.5.1 OnyxClient

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

with OnyxClient(config) as client:
users = client.all_users()

>>> users
[
{
"username": "user",
"site": "site",
"email": "user@email.com",
}
{
"username": "another_user",
"site": "another_site",
"email": "another_user@email.com",
}
]

- 49/55 -

1.5.2 OnyxConfig

Class for storing information required to connect/authenticate with Onyx.
__init__ (domain, token=None, username=None, password=None)
Initialise a config.

This object stores information required to connect and authenticate with Onyx.

A domain must be provided, alongside an API token and/or the username + password.

PARAMETER DESCRIPTION

domain Domain for connecting to Onyx.
TYPE: str

token Token for authenticating with Onyx.

TYPE: optional[str] DEFAULT: None
username Username for authenticating with Onyx.
TYPE: optional[str] DEFAULT: None
password Password for authenticating with Onyx.

TYPE: optional[str] DEFAULT: None

Examples:
Create a config using environment variables for the domain and an API token:

import os
from onyx import OnyxConfig, OnyxEnv

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

Or using environment variables for the domain and login credentials:

import os
from onyx import OnyxConfig, OnyxEnv

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],
username=o0s.environ[OnyxEnv.USERNAME],
password=o0s.environ[OnyxEnv.PASSWORD],

- 50/55 -

1.5.2 OnyxConfig

1.5.3 OnyxEnv

1.5.3 OnyxEnv

Class containing recommended environment variable names for Onyx.

If environment variables are created with these recommended names, then the attributes of this class can be used to access
them.

These attributes and the recommended environment variable names are:

OnyxEnv.DOMAIN = "ONYX_DOMAIN"
OnyxEnv.TOKEN = "ONYX_TOKEN"
OnyxEnv.USERNAME = "ONYX_USERNAME"
OnyxEnv.PASSWORD = "ONYX_PASSWORD"

Examples:
In the shell, create the following environment variables with your credentials:

$ export ONYX_DOMAIN="https://onyx.example.domain"
$ export ONYX_TOKEN="example-onyx-token"

$ export ONYX_USERNAME="example-onyx-username"

$ export ONYX_PASSWORD="example-onyx-password"

Then access them in Python to create an OnyxConfig object:

import os
from onyx import OnyxEnv, OnyxConfig

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],
username=o0s.environ[0OnyxEnv.USERNAME],
password=os.environ[OnyxEnv.PASSWORD],

-51/55 -

1.5.4 OnyxField

1.5.4 OnyxField

Class that represents a single field-value pair for use in Onyx queries.
__init__ (**kwargs)

Initialise a field.

PARAMETER DESCRIPTION
**kwargs Keyword arguments containing a single key-value pair.
TYPE: Any DEFAULT: {}

ites v

« Takes a single key-value argument as input.

* The key corresponds to a field (and optional lookup) to use for filtering.

* The value corresponds to the field value(s) that are being matched against.

¢ onyxField instances can be combined into complex expressions using Python's bitwise operators: & (AND), | (OR), » (XOR), and ~
(NOT).

¢ Multi-value lookups (e.g. in, range) support passing a Python list as the value. These are coerced into comma-separated strings

internally.

Examples:

Create onyxField objects and combine them using Python bitwise operators:

from onyx import OnyxField

fieldl
field2

= OnyxField(field1="valuel")

= OnyxField(field2__contains="value2")

expression = (fieldl | field2) & OnyxField(
published_date__range=["2023-01-01", "2023-01-02"]

)

>>> fieldl

<onyx.field.OnyxField object at ©x1028eb850>
>>> field2

<onyx.field.OnyxField object at ©x1028eb850>
>>> expression

<onyx.field.OnyxField object at ©x103b6fc40>
>>> fieldl.query

{"field1": "value1"}

>>> field2.query

{"field2__contains": "value2"}
>>> expression.query
{
gt [
{"|": [{"field1": "valuel"}, {"field2__contains": "value2"}]}

{"published_date__range": "2023-01-01,2023-01-02"},

- 52/55 -

1.5.5 Exceptions

1.5.5 Exceptions

OonyxError
Bases: Exception
Generic class for all Onyx exceptions.
onyxConfigError
Bases: onyxError
Config validation error.
This error occurs due to validation failures when initialising an onyxconfig object.
Examples:

A domain was not provided.

Neither a token or valid login credentials (username and password) were provided.
OonyxClientError
Bases: onyxError
Client validation error.
This error occurs due to validation failures within an onyxclient object, and not due to error codes returned by the Onyx API.
Examples:

Incorrect types were provided to onyxclient methods.
Empty strings were provided for required arguments such as the climb_id, creating an invalid URL.
Empty CSV/TSV files are provided on onyxClient.csv_create, OnyxClient.csv_update, Or OnyxClient.csv_delete .

CSV/TSYV files with more than one record are provided to onyxClient.csv_create, OnyxClient.csv_update, Or OnyxClient.csv_delete

when multiline = False.

ites v

¢ One counter-intuitive cause of this error is when an onyxclient.get request using fields returns more than one result.

¢ This is not an onyxRequestError because for this particular combination of parameters, an underlying call to the onyxClient.filter
method is made.

¢ The request to the Onyx API may be successful, but return more than one record. However, the onyxclient.get method expects a
single record, resulting in the error being raised.

« This behaviour may change in the future.

OonyxFieldError
Bases: onyxError
Field validation error.

This error occurs due to validation failures within the onyxrield class.

- 53/55 -

Examples:

* The user did not provide exactly one key-value pair on initialisation.
* An attempt was made to combine an onyxField instance with a different type.

» The structure of the underlying onyxField.query is somehow incorrect.
onyxConnectionError
Bases: onyxError
Onyx connection error.

This error occurs due to a failure to connect to the Onyx API.

1.5.5 Exceptions

tes v

¢ This error occurs due to any subclass of requests.RequestException (excluding requests.HTTPError) being raised.

« For more information, see: https://requests.readthedocs.io/en/latest/api/#requests.RequestException

OnyxHTTPError
Bases: onyxError

Onyx HTTP error.

This error occurs due to a request to the Onyx API either failing (code 4xx) or causing a server error (code 5xx).

tes v

¢ This error occurs due to a requests.HTTPError being raised.
e Like the requests.HTTPError class, instances of this class have a response object containing details of the error.

* For more information on the response object, see: https://requests.readthedocs.io/en/latest/api/#requests.Response

Examples:

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient, OnyxField
from onyx.exceptions import OnyxHTTPError

config = OnyxConfig(
domain=o0s.environ[OnyxEnv.DOMAIN],
token=o0s.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
try:
records = list(
client.query(
project="project",
query=(
onyxField(field1="abcd")
& OnyxField(published_date__range=["2023-01-01", "2023-01-02"])
)
)
)
except OnyxHTTPError as e:
print(e.response.json())

OnyxRequestError
Bases: onyxHTTPError
Onyx request error.

This error occurs due to a failed request to the Onyx API (code 4xx).

- 54/55 -

https://requests.readthedocs.io/en/latest/api/#requests.RequestException
https://requests.readthedocs.io/en/latest/api/#requests.Response

1.5.5 Exceptions

Examples:

¢ Invalid field names or field values (4060 Bad Request).

* Invalid authentication credentials (461 unauthorized).

* A request was made for something which the user has insufficient permissions for (403 Forbidden).
e An invalid project / CLIMB ID / anonymised value was provided (464 Not Found).

¢ An invalid HTTP method was used (465 Method Not Allowed).
onyxServerError
Bases: onyxHTTPError
Onyx server error.

This error occurs due to a request to the Onyx API causing a server error (code 5xx).

Warning v

Server errors are unintended and should be reported to an admin if encountered.

- 55/55 -

	Onyx | CLI & Python API
	1. CLI & Python API
	1.1 CLI & Python API for Onyx
	1.1.1 Introduction
	1.1.2 Contents
	Command-line Interface
	Python API

	1.2 Installation
	1.2.1 Install from conda-forge
	1.2.2 Install from PyPI
	1.2.3 Build from source
	Developing the Client

	1.3 Accessibility
	1.3.1 Enable/disable colours in the command-line interface

	1.4 Command-line Interface
	1.4.1 Getting Started
	Profile information
	Available projects
	Project fields
	Project data
	Filtering
	Advanced filtering using lookups
	Examples

	Further guidance

	1.4.2 onyx
	onyx projects
	onyx types
	onyx lookups
	onyx fields
	onyx choices
	onyx get
	onyx filter
	onyx history
	onyx analyses
	onyx identify
	onyx create
	onyx update
	onyx delete
	onyx analysis-fields
	onyx analysis-choices
	onyx get-analysis
	onyx filter-analysis
	onyx analysis-history
	onyx analysis-records
	onyx create-analysis
	onyx update-analysis
	onyx delete-analysis
	onyx profile
	onyx activity
	onyx siteusers
	onyx auth
	onyx auth register
	onyx auth login
	onyx auth logout
	onyx auth logoutall

	onyx admin
	onyx admin waiting
	onyx admin approve
	onyx admin allusers

	1.5 Python API
	1.5.1 OnyxClient
	__init__(config)
	projects()
	types()
	lookups()
	fields(project)
	choices(project, field)
	get(project, climb_id=None, fields=None, include=None, exclude=None)
	filter(project, fields=None, include=None, exclude=None, summarise=None, **kwargs)
	query(project, query=None, include=None, exclude=None, summarise=None)
	to_csv(csv_file, data, delimiter=None) classmethod
	history(project, climb_id)
	analyses(project, climb_id)
	identify(project, field, value, site=None)
	create(project, fields, test=False)
	update(project, climb_id, fields=None, test=False, clear=None)
	delete(project, climb_id)
	csv_create(project, csv_file, fields=None, delimiter=None, multiline=False, test=False)
	csv_update(project, csv_file, fields=None, delimiter=None, multiline=False, test=False)
	csv_delete(project, csv_file, delimiter=None, multiline=False)
	analysis_fields(project)
	analysis_choices(project, field)
	get_analysis(project, analysis_id=None, fields=None, include=None, exclude=None)
	filter_analysis(project, fields=None, include=None, exclude=None, summarise=None, **kwargs)
	analysis_history(project, analysis_id)
	analysis_records(project, analysis_id)
	create_analysis(project, fields, test=False)
	update_analysis(project, analysis_id, fields=None, test=False, clear=None)
	delete_analysis(project, analysis_id)
	register(domain, first_name, last_name, email, site, password) classmethod
	login()
	logout()
	logoutall()
	profile()
	activity()
	approve(username)
	waiting()
	site_users()
	all_users()

	1.5.2 OnyxConfig
	__init__(domain, token=None, username=None, password=None)

	1.5.3 OnyxEnv
	1.5.4 OnyxField
	__init__(**kwargs)

	1.5.5 Exceptions
	OnyxError
	OnyxConfigError
	OnyxClientError
	OnyxFieldError
	OnyxConnectionError
	OnyxHTTPError
	OnyxRequestError
	OnyxServerError

