
Onyx | CLI & Python API

CLIMB-TRE

Table of contents

31. CLI & Python API

31.1 CLI & Python API for Onyx

51.2 Installation

61.3 Accessibility

71.4 Command-line Interface

201.5 Python API

Table of contents

- 2/55 -

1. CLI & Python API

1.1 CLI & Python API for Onyx

1.1.1 Introduction

This is the documentation for Onyx-client, a program that provides a command-line interface and Python API for interacting with

the Onyx database.

Onyx is being developed as part of the CLIMB-TRE project.

A PDF of this documentation can be found here.

1.1.2 Contents

Installation

Learn how to install the client, or build it manually for development.

Accessibility

Learn how to enable/disable colours in the CLI.

Command-line Interface

Getting Started

Get started with filtering data on the command-line with Onyx.

Documentation

Documentation on all command-line functionality.

Python API

OnyxClient

Documentation on the OnyxClient class, used for interacting with Onyx.

1. CLI & Python API

- 3/55 -

https://github.com/CLIMB-TRE/onyx-client
https://github.com/CLIMB-TRE/onyx/
https://climb-tre.github.io/
/onyx-client/onyx-client.pdf

OnyxConfig

Documentation on the OnyxConfig class, used to provide credentials to OnyxClient .

OnyxEnv

Documentation on the OnyxEnv class, used as a shortcut to environment variable credentials.

OnyxField

Documentation on the OnyxField class, used to represent fields in an OnyxClient query.

Exceptions

Documentation on the possible exceptions raised by the OnyxClient .

1.1.2 Contents

- 4/55 -

1.2 Installation

Guidance for installing the Onyx client, or building it manually for development.

If you are running a CLIMB JupyterLab server, you do not need to install the client, as it comes pre-configured in your environment.

If you cannot see the most up-to-date version of the Onyx client, this is because you will have previously installed your own version

manually.

To revert your Onyx client to the managed up-to-date version, navigate to your terminal and run:

And restart your JupyterLab server.

1.2.1 Install from conda-forge

This installs the latest version of the client from conda-forge.

1.2.2 Install from PyPI

This installs the latest version of the client from PyPI.

1.2.3 Build from source

Clone the source code from GitHub:

Run installation from within the source code directory:

Developing the Client

If you wish to develop the client, ensure you have followed the above steps to build it.

From there, you can simply modify the client code and dependencies, and rebuild by executing:

Usage within CLIMB JupyterLab Servers

$ pip uninstall climb-onyx-client

$ conda create --name onyx --channel conda-forge climb-onyx-client

$ pip install climb-onyx-client

$ git clone https://github.com/CLIMB-TRE/onyx-client.git

$ cd onyx-client/
$ pip install .

$ pip install .

1.2 Installation

- 5/55 -

https://anaconda.org/conda-forge/climb-onyx-client
https://pypi.org/project/climb-onyx-client/

1.3 Accessibility

1.3.1 Enable/disable colours in the command-line interface

Colours are enabled by default in the output of the command-line interface:

To disable them, create an environment variable ONYX_COLOURS with the value NONE :

To re-enable colours, unset the environment variable:

$ export ONYX_COLOURS=NONE

$ unset ONYX_COLOURS

1.3 Accessibility

- 6/55 -

1.4 Command-line Interface

1.4.1 Getting Started

This guide walks through getting started with the Onyx-client command-line interface.

The guide assumes an environment where authentication credentials are pre-configured.

Profile information

Available projects

If you cannot see the project(s) that you require access to, contact an admin.

Project fields

This returns the fields specification for the given PROJECT .

Project data

This returns all records from the given PROJECT .

The data can be exported to various file formats:

$ onyx profile

$ onyx projects

$ onyx fields PROJECT

$ onyx filter PROJECT

$ onyx filter PROJECT --format json > data.json
$ onyx filter PROJECT --format csv > data.csv
$ onyx filter PROJECT --format tsv > data.tsv

1.4 Command-line Interface

- 7/55 -

FILTERING

A project's data can be filtered to return records that match certain conditions.

Filtering on the CLI uses a field=value syntax, where field is the name of a field in the project, and value is the value you want

to match.

Multiple filters can be provided, and only the records that satisfy all these filters will be returned.

ADVANCED FILTERING USING LOOKUPS

The data can be filtered in more complex ways using lookups. These use a field.lookup=value syntax (or alternatively,

field__lookup=value), and different ones are available depending on a field's data type (e.g. text , integer). There are lookups for

searching between a range of values on a field (range), whether a field's value is empty (isnull), whether a field case-

insensitively contains some text (icontains), and more.

EXAMPLES

To filter for all records in a PROJECT published on a specific date (e.g. 2023-09-18):

To filter for all records in a PROJECT published on the current date, a special today keyword can be used:

To filter for all records in a PROJECT with a published_date from 2023-09-01 to 2023-09-18 , the range lookup can be used:

Assuming that PROJECT has a sample_type field, then all records with sample_type = "swab" that were published from 2023-09-01

to 2023-09-18 can be obtained with:

Further guidance

For further guidance using Onyx-client, use the --help option.

$ onyx filter PROJECT --field published_date=2023-09-18

$ onyx filter PROJECT --field published_date=today

$ onyx filter PROJECT --field published_date.range=2023-09-01,2023-09-18

$ onyx filter PROJECT --field published_date.range=2023-09-01,2023-09-18 --field sample_type=swab

$ onyx --help
$ onyx profile --help
$ onyx projects --help
$ onyx fields --help
$ onyx filter --help

1.4.1 Getting Started

- 8/55 -

https://climb-tre.github.io/onyx/fields/lookups/
https://climb-tre.github.io/onyx/fields/types/
https://climb-tre.github.io/onyx/fields/types/#text
https://climb-tre.github.io/onyx/fields/types/#text
https://climb-tre.github.io/onyx/fields/types/#integer
https://climb-tre.github.io/onyx/fields/types/#integer
https://climb-tre.github.io/onyx/fields/lookups/#range
https://climb-tre.github.io/onyx/fields/lookups/#range
https://climb-tre.github.io/onyx/fields/lookups/#isnull
https://climb-tre.github.io/onyx/fields/lookups/#isnull
https://climb-tre.github.io/onyx/fields/lookups/#icontains
https://climb-tre.github.io/onyx/fields/lookups/#icontains
https://climb-tre.github.io/onyx/fields/lookups/

1.4.2 onyx

API for Pathogen Metadata.

For documentation, see: https://climb-tre.github.io/onyx-client/

Usage:

Options:

-d, --domain TEXT : Domain name for connecting to Onyx. [env var: ONYX_DOMAIN]

-t, --token TEXT : Token for authenticating with Onyx. [env var: ONYX_TOKEN]

-u, --username TEXT : Username for authenticating with Onyx. [env var: ONYX_USERNAME]

-p, --password TEXT : Password for authenticating with Onyx. [env var: ONYX_PASSWORD]

-v, --version : Show the client version number and exit.

--help : Show this message and exit.

Commands:

projects : View available projects.

types : View available field types.

lookups : View available lookups.

fields : View the field specification for a project.

choices : View options for a choice field in a project.

get : Get a record from a project.

filter : Filter multiple records from a project.

history : View the history of a record in a project.

analyses : View analyses of a record in a project.

identify : Get the anonymised identifier for a value...

create : Create a record in a project.

update : Update a record in a project.

delete : Delete a record in a project.

analysis-fields : View the analysis field specification for...

analysis-choices : View options for an analysis choice field.

get-analysis : Get an analysis from a project.

filter-analysis : Filter multiple analyses from a project.

analysis-history : View the history of an analysis in a project.

analysis-records : View records involved in an analysis in a...

create-analysis : Create an analysis in a project.

update-analysis : Update an analysis in a project.

delete-analysis : Delete an analysis in a project.

profile : View profile information.

activity : View latest profile activity.

siteusers : View users from the same site.

auth : Authentication commands.

admin : Admin commands.

$ onyx [OPTIONS] COMMAND [ARGS]...

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1.4.2 onyx

- 9/55 -

https://climb-tre.github.io/onyx-client/

onyx projects

View available projects.

Usage:

Options:

-F, --format [table|json] : Set the file format of the returned data. [default: table]

--help : Show this message and exit.

onyx types

View available field types.

Usage:

Options:

-F, --format [table|json] : Set the file format of the returned data. [default: table]

--help : Show this message and exit.

onyx lookups

View available lookups.

Usage:

Options:

-F, --format [table|json] : Set the file format of the returned data. [default: table]

--help : Show this message and exit.

onyx fields

View the field specification for a project.

Usage:

Arguments:

PROJECT : [required]

Options:

-F, --format [table|json|csv|tsv] : Set the file format of the returned data. [default: table]

--help : Show this message and exit.

onyx choices

View options for a choice field in a project.

Usage:

$ onyx projects [OPTIONS]

•

•

$ onyx types [OPTIONS]

•

•

$ onyx lookups [OPTIONS]

•

•

$ onyx fields [OPTIONS] PROJECT

•

•

•

1.4.2 onyx

- 10/55 -

Arguments:

PROJECT : [required]

FIELD : [required]

Options:

-F, --format [table|json] : Set the file format of the returned data. [default: table]

--help : Show this message and exit.

onyx get

Get a record from a project.

Usage:

Arguments:

PROJECT : [required]

[CLIMB_ID]

Options:

-f, --field TEXT : Filter the data by providing conditions that the fields must match. Uses a name=value syntax.

-i, --include TEXT : Specify which fields to include in the output.

-e, --exclude TEXT : Specify which fields to exclude from the output.

--help : Show this message and exit.

onyx filter

Filter multiple records from a project.

Usage:

Arguments:

PROJECT : [required]

Options:

-f, --field TEXT : Filter the data by providing conditions that the fields must match. Uses a name=value syntax.

-i, --include TEXT : Specify which fields to include in the output.

-e, --exclude TEXT : Specify which fields to exclude from the output.

-s, --summarise TEXT : For a given field (or group of fields), return the frequency of each unique value (or unique group of

values).

-F, --format [json|csv|tsv] : Set the file format of the returned data. [default: json]

--help : Show this message and exit.

onyx history

View the history of a record in a project.

$ onyx choices [OPTIONS] PROJECT FIELD

•

•

•

•

$ onyx get [OPTIONS] PROJECT [CLIMB_ID]

•

•

•

•

•

•

$ onyx filter [OPTIONS] PROJECT

•

•

•

•

•

•

•

1.4.2 onyx

- 11/55 -

Usage:

Arguments:

PROJECT : [required]

CLIMB_ID : [required]

Options:

-F, --format [table|json] : Set the file format of the returned data. [default: table]

--help : Show this message and exit.

onyx analyses

View analyses of a record in a project.

Usage:

Arguments:

PROJECT : [required]

CLIMB_ID : [required]

Options:

-F, --format [json|csv|tsv] : Set the file format of the returned data. [default: json]

--help : Show this message and exit.

onyx identify

Get the anonymised identifier for a value on a field.

Usage:

Arguments:

PROJECT : [required]

FIELD : [required]

VALUE : [required]

Options:

-s, --site TEXT : Site code for the value. If not provided, defaults to the user's site.

-F, --format [table|json] : Set the file format of the returned data. [default: table]

--help : Show this message and exit.

onyx create

Create a record in a project.

Usage:

$ onyx history [OPTIONS] PROJECT CLIMB_ID

•

•

•

•

$ onyx analyses [OPTIONS] PROJECT CLIMB_ID

•

•

•

•

$ onyx identify [OPTIONS] PROJECT FIELD VALUE

•

•

•

•

•

•

$ onyx create [OPTIONS] PROJECT

1.4.2 onyx

- 12/55 -

Arguments:

PROJECT : [required]

Options:

-f, --field TEXT : Field and value to be created. Uses a name=value syntax.

-t, --test : Run the command as a test. [default: (False)]

--help : Show this message and exit.

onyx update

Update a record in a project.

Usage:

Arguments:

PROJECT : [required]

CLIMB_ID : [required]

Options:

-f, --field TEXT : Field and value to be updated. Uses a name=value syntax.

-t, --test : Run the command as a test. [default: (False)]

-c, --clear TEXT : Field to be cleared. Overrides any value provided by the --field argument.

--help : Show this message and exit.

onyx delete

Delete a record in a project.

Usage:

Arguments:

PROJECT : [required]

CLIMB_ID : [required]

Options:

--force : Run the command without confirmation. [default: (False)]

--help : Show this message and exit.

onyx analysis-fields

View the analysis field specification for a project.

Usage:

Arguments:

PROJECT : [required]

•

•

•

•

$ onyx update [OPTIONS] PROJECT CLIMB_ID

•

•

•

•

•

•

$ onyx delete [OPTIONS] PROJECT CLIMB_ID

•

•

•

•

$ onyx analysis-fields [OPTIONS] PROJECT

•

1.4.2 onyx

- 13/55 -

Options:

-F, --format [table|json|csv|tsv] : Set the file format of the returned data. [default: table]

--help : Show this message and exit.

onyx analysis-choices

View options for an analysis choice field.

Usage:

Arguments:

PROJECT : [required]

FIELD : [required]

Options:

-F, --format [table|json] : Set the file format of the returned data. [default: table]

--help : Show this message and exit.

onyx get-analysis

Get an analysis from a project.

Usage:

Arguments:

PROJECT : [required]

[ANALYSIS_ID]

Options:

-f, --field TEXT : Filter the data by providing conditions that the fields must match. Uses a name=value syntax.

-i, --include TEXT : Specify which fields to include in the output.

-e, --exclude TEXT : Specify which fields to exclude from the output.

--help : Show this message and exit.

onyx filter-analysis

Filter multiple analyses from a project.

Usage:

Arguments:

PROJECT : [required]

•

•

$ onyx analysis-choices [OPTIONS] PROJECT FIELD

•

•

•

•

$ onyx get-analysis [OPTIONS] PROJECT [ANALYSIS_ID]

•

•

•

•

•

•

$ onyx filter-analysis [OPTIONS] PROJECT

•

1.4.2 onyx

- 14/55 -

Options:

-f, --field TEXT : Filter the data by providing conditions that the fields must match. Uses a name=value syntax.

-i, --include TEXT : Specify which fields to include in the output.

-e, --exclude TEXT : Specify which fields to exclude from the output.

-s, --summarise TEXT : For a given field (or group of fields), return the frequency of each unique value (or unique group of

values).

-F, --format [json|csv|tsv] : Set the file format of the returned data. [default: json]

--help : Show this message and exit.

onyx analysis-history

View the history of an analysis in a project.

Usage:

Arguments:

PROJECT : [required]

ANALYSIS_ID : [required]

Options:

-F, --format [table|json] : Set the file format of the returned data. [default: table]

--help : Show this message and exit.

onyx analysis-records

View records involved in an analysis in a project.

Usage:

Arguments:

PROJECT : [required]

ANALYSIS_ID : [required]

Options:

-F, --format [json|csv|tsv] : Set the file format of the returned data. [default: json]

--help : Show this message and exit.

onyx create-analysis

Create an analysis in a project.

Usage:

Arguments:

PROJECT : [required]

•

•

•

•

•

•

$ onyx analysis-history [OPTIONS] PROJECT ANALYSIS_ID

•

•

•

•

$ onyx analysis-records [OPTIONS] PROJECT ANALYSIS_ID

•

•

•

•

$ onyx create-analysis [OPTIONS] PROJECT

•

1.4.2 onyx

- 15/55 -

Options:

-f, --field TEXT : Field and value to be created. Uses a name=value syntax.

-t, --test : Run the command as a test. [default: (False)]

--help : Show this message and exit.

onyx update-analysis

Update an analysis in a project.

Usage:

Arguments:

PROJECT : [required]

ANALYSIS_ID : [required]

Options:

-f, --field TEXT : Field and value to be updated. Uses a name=value syntax.

-t, --test : Run the command as a test. [default: (False)]

-c, --clear TEXT : Field to be cleared. Overrides any value provided by the --field argument.

--help : Show this message and exit.

onyx delete-analysis

Delete an analysis in a project.

Usage:

Arguments:

PROJECT : [required]

ANALYSIS_ID : [required]

Options:

--force : Run the command without confirmation. [default: (False)]

--help : Show this message and exit.

onyx profile

View profile information.

Usage:

Options:

-F, --format [table|json] : Set the file format of the returned data. [default: table]

--help : Show this message and exit.

•

•

•

$ onyx update-analysis [OPTIONS] PROJECT ANALYSIS_ID

•

•

•

•

•

•

$ onyx delete-analysis [OPTIONS] PROJECT ANALYSIS_ID

•

•

•

•

$ onyx profile [OPTIONS]

•

•

1.4.2 onyx

- 16/55 -

onyx activity

View latest profile activity.

Usage:

Options:

-F, --format [table|json] : Set the file format of the returned data. [default: table]

--help : Show this message and exit.

onyx siteusers

View users from the same site.

Usage:

Options:

-F, --format [table|json] : Set the file format of the returned data. [default: table]

--help : Show this message and exit.

onyx auth

Authentication commands.

Usage:

Options:

--help : Show this message and exit.

Commands:

register : Create a new user.

login : Log in.

logout : Log out.

logoutall : Log out across all clients.

onyx auth register

Create a new user.

Usage:

Options:

--help : Show this message and exit.

onyx auth login

Log in.

Usage:

$ onyx activity [OPTIONS]

•

•

$ onyx siteusers [OPTIONS]

•

•

$ onyx auth [OPTIONS] COMMAND [ARGS]...

•

•

•

•

•

$ onyx auth register [OPTIONS]

•

1.4.2 onyx

- 17/55 -

Options:

--help : Show this message and exit.

onyx auth logout

Log out.

Usage:

Options:

--help : Show this message and exit.

onyx auth logoutall

Log out across all clients.

Usage:

Options:

--help : Show this message and exit.

onyx admin

Admin commands.

Usage:

Options:

--help : Show this message and exit.

Commands:

waiting : View users waiting for approval.

approve : Approve a user.

allusers : View users across all sites.

onyx admin waiting

View users waiting for approval.

Usage:

Options:

-F, --format [table|json] : Set the file format of the returned data. [default: table]

--help : Show this message and exit.

onyx admin approve

Approve a user.

$ onyx auth login [OPTIONS]

•

$ onyx auth logout [OPTIONS]

•

$ onyx auth logoutall [OPTIONS]

•

$ onyx admin [OPTIONS] COMMAND [ARGS]...

•

•

•

•

$ onyx admin waiting [OPTIONS]

•

•

1.4.2 onyx

- 18/55 -

Usage:

Arguments:

USERNAME : Name of the user being approved. [required]

Options:

--help : Show this message and exit.

onyx admin allusers

View users across all sites.

Usage:

Options:

-F, --format [table|json] : Set the file format of the returned data. [default: table]

--help : Show this message and exit.

$ onyx admin approve [OPTIONS] USERNAME

•

•

$ onyx admin allusers [OPTIONS]

•

•

1.4.2 onyx

- 19/55 -

1.5 Python API

1.5.1 OnyxClient

Class for querying and manipulating data within Onyx.

__init__(config)

Initialise a client.

Examples:

The recommended way to initialise a client (as a context manager):

Alternatively, the client can be initialised as follows:

When making multiple requests, using the client as a context manager can improve performance.

This is due to the fact that the client will re-use the same session for all requests, rather than creating a new session for each

request.

For more information, see: https://requests.readthedocs.io/en/master/user/advanced/#session-objects

projects()

View available projects.

Examples:

PARAMETER DESCRIPTION

config OnyxConfig object that stores information for connecting and authenticating with Onyx.

TYPE: OnyxConfig

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
pass # Do something with the client here

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

client = OnyxClient(config)
Do something with the client here

Tips

•

•

•

RETURNS DESCRIPTION

List[Dict[str, str]] List of projects.

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

1.5 Python API

- 20/55 -

https://requests.readthedocs.io/en/master/user/advanced/#session-objects

types()

View available field types.

Examples:

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
projects = client.projects()

>>> projects
[

{
"project": "project_1",
"scope": "admin",
"actions": [

"get",
"list",
"filter",
"add",
"change",
"delete",

],
},
{

"project": "project_2",
"scope": "analyst",
"actions": [

"get",
"list",
"filter",

],
},

]

RETURNS DESCRIPTION

List[Dict[str, Any]] List of field types.

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
field_types = client.types()

>>> field_types
[

{
"type": "text",
"description": "A string of characters.",
"lookups": [

"exact",
"ne",
"in",
"notin",
"contains",
"startswith",
"endswith",
"iexact",
"icontains",
"istartswith",
"iendswith",
"length",
"length__in",
"length__range",
"isnull",

],
},
{

"type": "choice",
"description": "A restricted set of options.",
"lookups": [

"exact",
"ne",
"in",
"notin",
"isnull",

1.5.1 OnyxClient

- 21/55 -

lookups()

View available lookups.

Examples:

fields(project)

View fields for a project.

Examples:

],
},

]

RETURNS DESCRIPTION

List[Dict[str, Any]] List of lookups.

import os

from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
lookups = client.lookups()

>>> lookups
[

{
"lookup": "exact",
"description": "The field's value must be equal to the query value.",
"types": [

"text",
"choice",
"integer",
"decimal",
"date",
"datetime",
"bool",

],
},
{

"lookup": "ne",
"description": "The field's value must not be equal to the query value.",
"types": [

"text",
"choice",
"integer",
"decimal",
"date",
"datetime",
"bool",

],
},

]

PARAMETER DESCRIPTION

project Name of the project.

TYPE: str

RETURNS DESCRIPTION

Dict[str, Any] Dict of fields.

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

1.5.1 OnyxClient

- 22/55 -

)

with OnyxClient(config) as client:
fields = client.fields("project")

>>> fields
{

"name": "Project Name",
"description": "Project description.",
"object_type": "records",
"version": "0.1.0",
"fields": {

"climb_id": {
"description": "Unique identifier for a project record in Onyx.",
"type": "text",
"required": True,
"actions": [

"get",
"list",
"filter",

],
"restrictions": [

"Max length: 12",
],

},
"is_published": {

"description": "Indicator for whether a project record has been published.",
"type": "bool",
"required": False,
"actions": [

"get",
"list",
"filter",
"add",
"change",

],
"default": True,

},
"published_date": {

"description": "The date the project record was published in Onyx.",
"type": "date (YYYY-MM-DD)",
"required": False,
"actions": [

"get",
"list",
"filter",

],
},
"country": {

"description": "Country of origin.",
"type": "choice",
"required": False,
"actions": [

"get",
"list",
"filter",
"add",
"change",

],
"values": [

"ENG",
"WALES",
"SCOT",
"NI",

],
},

},
}

1.5.1 OnyxClient

- 23/55 -

choices(project, field)

View choices for a field.

Examples:

PARAMETER DESCRIPTION

project Name of the project.

TYPE: str

field Choice field on the project.

TYPE: str

RETURNS DESCRIPTION

Dict[str, Dict[str, Any]] Dictionary mapping choices to information about the choice.

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
choices = client.choices("project", "country")

>>> choices
{

"ENG": {
"description": "England",
"is_active" : True,

},
"WALES": {

"description": "Wales",
"is_active" : True,

},
"SCOT": {

"description": "Scotland",
"is_active" : True,

},
"NI": {

"description": "Northern Ireland",
"is_active" : True,

},
}

1.5.1 OnyxClient

- 24/55 -

get(project, climb_id=None, fields=None, include=None, exclude=None)

Get a record from a project.

Examples:

Get a record by CLIMB ID:

Get a record by fields that uniquely identify it:

DEFAULT: None

DEFAULT: None

DEFAULT: None

DEFAULT: None

PARAMETER DESCRIPTION

project Name of the project.

TYPE: str

climb_id Unique identifier for the record.

TYPE: Optional[str]

fields Dictionary of field filters used to uniquely identify the record.

TYPE: Optional[Dict[str, Any]]

include Fields to include in the output.

TYPE: Union[List[str], str, None]

exclude Fields to exclude from the output.

TYPE: Union[List[str], str, None]

RETURNS DESCRIPTION

Dict[str, Any] Dict containing the record.

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
record = client.get("project", "C-1234567890")

>>> record
{

"climb_id": "C-1234567890",
"published_date": "2023-01-01",
"field1": "value1",
"field2": "value2",

}

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
record = client.get(

"project",
fields={

"field1": "value1",
"field2": "value2",

},
)

>>> record
{

"climb_id": "C-1234567890",
"published_date": "2023-01-01",

1.5.1 OnyxClient

- 25/55 -

The include and exclude arguments can be used to control the fields returned:

Including/excluding fields to reduce the size of the returned data can improve performance.

"field1": "value1",
"field2": "value2",

}

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
record_v1 = client.get(

"project",
climb_id="C-1234567890",
include=["climb_id", "published_date"],

)
record_v2 = client.get(

"project",
climb_id="C-1234567890",
exclude=["field2"],

)

>>> record_v1
{

"climb_id": "C-1234567890",
"published_date": "2023-01-01",

}
>>> record_v2
{

"climb_id": "C-1234567890",
"published_date": "2023-01-01",
"field1": "value1",

}

Tips

•

1.5.1 OnyxClient

- 26/55 -

filter(project, fields=None, include=None, exclude=None, summarise=None, **kwargs)

Filter records from a project.

Field filters specify requirements that the returned data must satisfy. They can be provided as keyword arguments, or as a dictionary

to the fields argument.

These filters can be a simple match on a value (e.g. "published_date" : "2023-01-01"), or they can use a 'lookup' for more complex

matching conditions (e.g. "published_date__iso_year" : "2023").

Multi-value lookups (e.g. in , range) can also be used. For keyword arguments, multiple values can be provided as a Python list. For

the fields dictionary, multiple values must be provided as a comma-separated string (see examples below).

Examples:

Retrieve all records that match a set of field requirements:

DEFAULT: None

DEFAULT: None

DEFAULT: None

DEFAULT: None

DEFAULT: {}

PARAMETER DESCRIPTION

project Name of the project.

TYPE: str

fields Dictionary of field filters.

TYPE: Optional[Dict[str, Any]]

include Fields to include in the output.

TYPE: Union[List[str], str, None]

exclude Fields to exclude from the output.

TYPE: Union[List[str], str, None]

summarise For a given field (or group of fields), return the frequency of each unique value (or unique group of

values).

TYPE: Union[List[str], str, None]

**kwargs Additional keyword arguments are interpreted as field filters.

TYPE: Any

RETURNS DESCRIPTION

None Generator of records. If a summarise argument is provided, each record will be a dict containing values of

the summary fields and a count for the frequency.

Notes

•

•

•

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

Field conditions can either be provided as keyword arguments:
with OnyxClient(config) as client:

records = list(
client.filter(

project="project",
field1="abcd",
published_date__range=["2023-01-01", "2023-01-02"],

)
)

Or as a dictionary to the 'fields' argument:
with OnyxClient(config) as client:

records = list(

1.5.1 OnyxClient

- 27/55 -

The summarise argument can be used to return the frequency of each unique value for a given field, or the frequency of each

unique set of values for a group of fields:

query(project, query=None, include=None, exclude=None, summarise=None)

Query records from a project.

client.filter(
project="project",
fields={

"field1": "abcd",
"published_date__range" : "2023-01-01, 2023-01-02",

},
)

)

>>> records
[

{
"climb_id": "C-1234567890",
"published_date": "2023-01-01",
"field1": "abcd",
"field2": 123,

},
{

"climb_id": "C-1234567891",
"published_date": "2023-01-02",
"field1": "abcd",
"field2": 456,

},
]

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
records_v1 = list(

client.filter(
project="project",
field1="abcd",
published_date__range=["2023-01-01", "2023-01-02"],
summarise="published_date",

)
)

records_v2 = list(
client.filter(

project="project",
field1="abcd",
published_date__range=["2023-01-01", "2023-01-02"],
summarise=["published_date", "field2"],

)
)

>>> records_v1
[

{
"published_date": "2023-01-01",
"count": 1,

},
{

"published_date": "2023-01-02",
"count": 1,

},
]
>>> records_v2
[

{
"published_date": "2023-01-01",
"field2": 123,
"count": 1,

},
{

"published_date": "2023-01-02",
"field2": 456,
"count": 1,

},
]

1.5.1 OnyxClient

- 28/55 -

This method supports more complex filtering than the OnyxClient.filter method. Here, filters can be combined using Python's

bitwise operators, representing AND, OR, XOR and NOT operations.

The query argument must be an instance of OnyxField .

OnyxField instances can be combined into complex expressions using Python's bitwise operators: & (AND), | (OR), ^ (XOR), and ~

(NOT).

Multi-value lookups (e.g. in , range) support passing a Python list (see example below).

Examples:

Retrieve all records that match the query provided by an OnyxField object:

DEFAULT: None

DEFAULT: None

DEFAULT: None

DEFAULT: None

PARAMETER DESCRIPTION

project Name of the project.

TYPE: str

query OnyxField object representing the query being made.

TYPE: Optional[OnyxField]

include Fields to include in the output.

TYPE: Union[List[str], str, None]

exclude Fields to exclude from the output.

TYPE: Union[List[str], str, None]

summarise For a given field (or group of fields), return the frequency of each unique value (or unique group of

values).

TYPE: Union[List[str], str, None]

RETURNS DESCRIPTION

None Generator of records. If a summarise argument is provided, each record will be a dict containing values of

the summary fields and a count for the frequency.

Notes

•

•

•

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient, OnyxField

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
records = list(

client.query(
project="project",
query=(

OnyxField(field1="abcd")
& OnyxField(published_date__range=["2023-01-01", "2023-01-02"])

),
)

)

>>> records
[

{
"climb_id": "C-1234567890",
"published_date": "2023-01-01",
"field1": "abcd",
"field2": 123,

},
{

"climb_id": "C-1234567891",

1.5.1 OnyxClient

- 29/55 -

to_csv(csv_file, data, delimiter=None)

Write a set of records to a CSV file.

Examples:

history(project, climb_id)

View the history of a record in a project.

Examples:

"published_date": "2023-01-02",
"field1": "abcd",
"field2": 456,

},
]

classmethod

DEFAULT: None

PARAMETER DESCRIPTION

csv_file File object for the CSV file being written to.

TYPE: TextIO

data The data being written to the CSV file. Must be either a list / generator of dict records.

TYPE: Union[List[Dict[str, Any]], Generator[Dict[str, Any], Any, None]]

delimiter CSV delimiter. If not provided, defaults to "," for CSVs. Set this to "\t" to work with TSV files.

TYPE: Optional[str]

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client, open("/path/to/file.csv") as csv_file:
client.to_csv(

csv_file=csv_file,
data=client.filter(

"project",
fields={

"field1": "value1",
"field2": "value2",

},
)

PARAMETER DESCRIPTION

project Name of the project.

TYPE: str

climb_id Unique identifier for the record.

TYPE: str

RETURNS DESCRIPTION

Dict[str, Any] Dict containing the history of the record.

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

1.5.1 OnyxClient

- 30/55 -

analyses(project, climb_id)

View the analyses of a record in a project.

Examples:

with OnyxClient(config) as client:
history = client.history("project", "C-1234567890")

>>> history
{

"climb_id": "C-1234567890",
"history": [

{
"username": "user",
"timestamp": "2023-01-01T00:00:00Z",
"action": "add",

},
{

"username": "user",
"timestamp": "2023-01-02T00:00:00Z",
"action": "change",
"changes": [

{
"field": "field_1",
"type": "text",
"from": "value1",
"to": "value2",

},
{

"field": "field_2",
"type": "integer",
"from": 3,
"to": 4,

},
{

"field": "nested_field",
"type": "relation",
"action": "add",
"count" : 3,

},
{

"field": "nested_field",
"type": "relation",
"action": "change",
"count" : 10,

},
],

},
],

}

PARAMETER DESCRIPTION

project Name of the project.

TYPE: str

climb_id Unique identifier for the record.

TYPE: str

RETURNS DESCRIPTION

List[Dict[str, Any]] List of Dicts containing basic details of each analysis of the record.

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
analyses = client.analyses("project", "C-1234567890")

>>> analyses
[

{
"analysis_id": "A-1234567890",
"published_date": "2023-02-01",

1.5.1 OnyxClient

- 31/55 -

identify(project, field, value, site=None)

Get the anonymised identifier for a value on a field.

Examples:

"analysis_date": "2023-01-01",
"site": "site",
"name": "First Analysis",
"report": "s3://analysis_1.html",
"outputs": "s3://analysis_1_outputs/",

},
{

"analysis_id": "A-0987654321",
"published_date": "2024-02-01",
"analysis_date": "2023-01-01",
"site": "site",
"name": "Second Analysis",
"report": "s3://analysis_2.html",
"outputs": "s3://analysis_2_outputs/",

},
]

DEFAULT: None

PARAMETER DESCRIPTION

project Name of the project.

TYPE: str

field Field on the project.

TYPE: str

value Value to identify.

TYPE: str

site Site to identify the value on. If not provided, defaults to the user's site.

TYPE: Optional[str]

RETURNS DESCRIPTION

Dict[str, str] Dict containing the project, site, field, value and anonymised identifier.

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
identification = client.identify("project", "sample_id", "hidden-value")

>>> identification
{

"project": "project",
"site": "site",
"field": "sample_id",
"value": "hidden-value",
"identifier": "S-1234567890",

}

1.5.1 OnyxClient

- 32/55 -

create(project, fields, test=False)

Create a record in a project.

Examples:

DEFAULT: False

PARAMETER DESCRIPTION

project Name of the project.

TYPE: str

fields Object representing the record to be created.

TYPE: Dict[str, Any]

test If True , runs the command as a test. Default: False

TYPE: bool

RETURNS DESCRIPTION

Dict[str, Any] Dict containing the CLIMB ID of the created record.

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
result = client.create(

"project",
fields={

"field1": "value1",
"field2": "value2",

},
)

>>> result
{"climb_id": "C-1234567890"}

1.5.1 OnyxClient

- 33/55 -

update(project, climb_id, fields=None, test=False, clear=None)

Update a record in a project.

Examples:

delete(project, climb_id)

Delete a record in a project.

DEFAULT: None

DEFAULT: False

DEFAULT: None

PARAMETER DESCRIPTION

project Name of the project.

TYPE: str

climb_id Unique identifier for the record.

TYPE: str

fields Object representing the record to be updated.

TYPE: Optional[Dict[str, Any]]

test If True , runs the command as a test. Default: False

TYPE: bool

clear List of fields to be cleared. Overrides any values provided in fields .

TYPE: Union[List[str], str, None]

RETURNS DESCRIPTION

Dict[str, Any] Dict containing the CLIMB ID of the updated record.

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
result = client.update(

project="project",
climb_id="C-1234567890",
fields={

"field1": "value1",
"field2": "value2",

},
clear=["field3", "field4"],

)

>>> result
{"climb_id": "C-1234567890"}

PARAMETER DESCRIPTION

project Name of the project.

TYPE: str

climb_id Unique identifier for the record.

TYPE: str

RETURNS DESCRIPTION

Dict[str, Any] Dict containing the CLIMB ID of the deleted record.

1.5.1 OnyxClient

- 34/55 -

Examples:

csv_create(project, csv_file, fields=None, delimiter=None, multiline=False, test=False)

Use a CSV file to create record(s) in a project.

Examples:

Create a single record:

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
result = client.delete(

project="project",
climb_id="C-1234567890",

)

>>> result
{"climb_id": "C-1234567890"}

DEFAULT: None

DEFAULT: None

DEFAULT: False

DEFAULT: False

PARAMETER DESCRIPTION

project Name of the project.

TYPE: str

csv_file File object for the CSV file being used for record upload.

TYPE: TextIO

fields Additional fields provided for each record being uploaded. Takes precedence over fields in the CSV.

TYPE: Optional[Dict[str, Any]]

delimiter CSV delimiter. If not provided, defaults to "," for CSVs. Set this to "\t" to work with TSV files.

TYPE: Optional[str]

multiline If True , allows processing of CSV files with more than one record. Default: False

TYPE: bool

test If True , runs the command as a test. Default: False

TYPE: bool

RETURNS DESCRIPTION

Union[Dict[str, Any],

List[Dict[str, Any]]]

Dict containing the CLIMB ID of the created record. If multiline = True , returns a list of

dicts containing the CLIMB ID of each created record.

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client, open("/path/to/file.csv") as csv_file:
result = client.csv_create(

project="project",
csv_file=csv_file,

)

>>> result
{"climb_id": "C-1234567890"}

1.5.1 OnyxClient

- 35/55 -

Create multiple records:

csv_update(project, csv_file, fields=None, delimiter=None, multiline=False, test=False)

Use a CSV file to update record(s) in a project.

Examples:

Update a single record:

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client, open("/path/to/file.csv") as csv_file:
results = client.csv_create(

project="project",
csv_file=csv_file,
multiline=True,

)

>>> results
[

{"climb_id": "C-1234567890"},
{"climb_id": "C-1234567891"},
{"climb_id": "C-1234567892"},

]

DEFAULT: None

DEFAULT: None

DEFAULT: False

DEFAULT: False

PARAMETER DESCRIPTION

project Name of the project.

TYPE: str

csv_file File object for the CSV file being used for record upload.

TYPE: TextIO

fields Additional fields provided for each record being uploaded. Takes precedence over fields in the CSV.

TYPE: Optional[Dict[str, Any]]

delimiter CSV delimiter. If not provided, defaults to "," for CSVs. Set this to "\t" to work with TSV files.

TYPE: Optional[str]

multiline If True , allows processing of CSV files with more than one record. Default: False

TYPE: bool

test If True , runs the command as a test. Default: False

TYPE: bool

RETURNS DESCRIPTION

Union[Dict[str, Any],

List[Dict[str, Any]]]

Dict containing the CLIMB ID of the updated record. If multiline = True , returns a list of

dicts containing the CLIMB ID of each updated record.

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client, open("/path/to/file.csv") as csv_file:
result = client.csv_update(

project="project",

1.5.1 OnyxClient

- 36/55 -

Update multiple records:

csv_delete(project, csv_file, delimiter=None, multiline=False)

Use a CSV file to delete record(s) in a project.

Examples:

Delete a single record:

csv_file=csv_file,
)

>>> result
{"climb_id": "C-1234567890"}

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client, open("/path/to/file.csv") as csv_file:
results = client.csv_update(

project="project",
csv_file=csv_file,
multiline=True,

)

>>> results
[

{"climb_id": "C-1234567890"},
{"climb_id": "C-1234567891"},
{"climb_id": "C-1234567892"},

]

DEFAULT: None

DEFAULT: False

PARAMETER DESCRIPTION

project Name of the project.

TYPE: str

csv_file File object for the CSV file being used for record upload.

TYPE: TextIO

delimiter CSV delimiter. If not provided, defaults to "," for CSVs. Set this to "\t" to work with TSV files.

TYPE: Optional[str]

multiline If True , allows processing of CSV files with more than one record. Default: False

TYPE: bool

RETURNS DESCRIPTION

Union[Dict[str, Any],

List[Dict[str, Any]]]

Dict containing the CLIMB ID of the deleted record. If multiline = True , returns a list of

dicts containing the CLIMB ID of each deleted record.

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client, open("/path/to/file.csv") as csv_file:
result = client.csv_delete(

project="project",
csv_file=csv_file,

)

1.5.1 OnyxClient

- 37/55 -

Delete multiple records:

analysis_fields(project)

View analysis fields.

Examples:

analysis_choices(project, field)

View choices for an analysis field.

>>> result
{"climb_id": "C-1234567890"}

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client, open("/path/to/file.csv") as csv_file:
results = client.csv_delete(

project="project",
csv_file=csv_file,
multiline=True,

)

>>> results
[

{"climb_id": "C-1234567890"},
{"climb_id": "C-1234567891"},
{"climb_id": "C-1234567892"},

]

PARAMETER DESCRIPTION

project Name of the project.

TYPE: str

RETURNS DESCRIPTION

Dict[str, Any] Dict of fields.

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
fields = client.analysis_fields("project")

PARAMETER DESCRIPTION

project Name of the project.

TYPE: str

field Analysis choice field.

TYPE: str

RETURNS DESCRIPTION

Dict[str, Dict[str, Any]] Dictionary mapping choices to information about the choice.

1.5.1 OnyxClient

- 38/55 -

Examples:

get_analysis(project, analysis_id=None, fields=None, include=None, exclude=None)

Get an analysis from a project.

Examples:

Get an analysis by analysis ID:

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
choices = client.analysis_choices("project", "country")

DEFAULT: None

DEFAULT: None

DEFAULT: None

DEFAULT: None

PARAMETER DESCRIPTION

project Name of the project.

TYPE: str

analysis_id Unique identifier for the analysis.

TYPE: Optional[str]

fields Dictionary of field filters used to uniquely identify the record.

TYPE: Optional[Dict[str, Any]]

include Fields to include in the output.

TYPE: Union[List[str], str, None]

exclude Fields to exclude from the output.

TYPE: Union[List[str], str, None]

RETURNS DESCRIPTION

Dict[str, Any] Dict containing the record.

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
analysis = client.get_analysis("project", "A-1234567890")

>>> analysis
{

"analysis_id": "A-1234567890",
"published_date": "2023-01-01",
"name": "Very cool analysis",
"result": "Found very cool things",

}

1.5.1 OnyxClient

- 39/55 -

filter_analysis(project, fields=None, include=None, exclude=None, summarise=None, **kwargs)

Filter analyses from a project.

Examples:

Retrieve all analyses that match a set of field requirements:

DEFAULT: None

DEFAULT: None

DEFAULT: None

DEFAULT: None

DEFAULT: {}

PARAMETER DESCRIPTION

project Name of the project.

TYPE: str

fields Dictionary of field filters.

TYPE: Optional[Dict[str, Any]]

include Fields to include in the output.

TYPE: Union[List[str], str, None]

exclude Fields to exclude from the output.

TYPE: Union[List[str], str, None]

summarise For a given field (or group of fields), return the frequency of each unique value (or unique group of

values).

TYPE: Union[List[str], str, None]

**kwargs Additional keyword arguments are interpreted as field filters.

TYPE: Any

RETURNS DESCRIPTION

None Generator of analyses. If a summarise argument is provided, each record will be a dict containing values

of the summary fields and a count for the frequency.

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
analyses = list(

client.filter_analysis(
project="project",
published_date__range=["2023-01-01", "2023-01-02"],

)
)

>>> analyses
[

{
"analysis_id": "A-1234567890",
"published_date": "2023-01-01",
"name": "Very cool analysis",
"result": "Found very cool things",

},
{

"analysis_id": "A-1234567891",
"published_date": "2023-01-02",
"name": "Not so cool analysis",
"result": "Found not so cool things",

},
]

1.5.1 OnyxClient

- 40/55 -

See the documentation for the filter method for more information on filtering records, as this also applies to analyses.

analysis_history(project, analysis_id)

View the history of an analysis in a project.

Examples:

Tips

•

PARAMETER DESCRIPTION

project Name of the project.

TYPE: str

analysis_id Unique identifier for the analysis.

TYPE: str

RETURNS DESCRIPTION

Dict[str, Any] Dict containing the history of the analysis.

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
history = client.analysis_history("project", "A-1234567890")

>>> history
{

"analysis_id": "A-1234567890",
"history": [

{
"username": "user",
"timestamp": "2023-01-01T00:00:00Z",
"action": "add",

},
{

"username": "user",
"timestamp": "2023-01-02T00:00:00Z",
"action": "change",
"changes": [

{
"field": "name",
"type": "text",
"from": "Cool analysis",
"to": "Very cool analysis",

},
],

},
],

}

1.5.1 OnyxClient

- 41/55 -

analysis_records(project, analysis_id)

View the records involved in an analysis in a project.

Examples:

create_analysis(project, fields, test=False)

Create an analysis in a project.

Examples:

PARAMETER DESCRIPTION

project Name of the project.

TYPE: str

analysis_id Unique identifier for the analysis.

TYPE: str

RETURNS DESCRIPTION

List[Dict[str, Any]] List of Dicts containing basic details of each record involved in the analysis.

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
records = client.analysis_records("project", "A-1234567890")

>>> records
[

{
"climb_id": "C-1234567890",
"published_date": "2023-01-01",
"site": "site_1",

},
{

"climb_id": "C-1234567891",
"published_date": "2023-01-02",
"site": "site_2",

},
]

DEFAULT: False

PARAMETER DESCRIPTION

project Name of the project.

TYPE: str

fields Object representing the analysis to be created.

TYPE: Dict[str, Any]

test If True , runs the command as a test. Default: False

TYPE: bool

RETURNS DESCRIPTION

Dict[str, Any] Dict containing the Analysis ID of the created analysis.

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

1.5.1 OnyxClient

- 42/55 -

update_analysis(project, analysis_id, fields=None, test=False, clear=None)

Update an analysis in a project.

Examples:

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
result = client.create_analysis(

"project",
fields={

"name": "Absolutely incredible analysis",
"result": "Insane results",

},
)

>>> result
{"analysis_id": "A-1234567890"}

DEFAULT: None

DEFAULT: False

DEFAULT: None

PARAMETER DESCRIPTION

project Name of the project.

TYPE: str

analysis_id Unique identifier for the analysis.

TYPE: str

fields Object representing the analysis to be updated.

TYPE: Optional[Dict[str, Any]]

test If True , runs the command as a test. Default: False

TYPE: bool

clear List of fields to be cleared. Overrides any values provided in fields .

TYPE: Union[List[str], str, None]

RETURNS DESCRIPTION

Dict[str, Any] Dict containing the Analysis ID of the updated analysis.

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
result = client.update_analysis(

project="project",
analysis_id="A-1234567890",
fields={

"result": "The results were even more insane",
},
clear=["report"],

)

>>> result
{"analysis_id": "A-1234567890"}

1.5.1 OnyxClient

- 43/55 -

delete_analysis(project, analysis_id)

Delete an analysis in a project.

Examples:

PARAMETER DESCRIPTION

project Name of the project.

TYPE: str

analysis_id Unique identifier for the analysis.

TYPE: str

RETURNS DESCRIPTION

Dict[str, Any] Dict containing the Analysis ID of the deleted analysis.

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
result = client.delete_analysis(

project="project",
analysis_id="A-1234567890",

)

>>> result
{"analysis_id": "A-1234567890"}

1.5.1 OnyxClient

- 44/55 -

register(domain, first_name, last_name, email, site, password)

Create a new user.

Examples:

login()

Log in the user.

Examples:

classmethod

PARAMETER DESCRIPTION

domain Name of the domain.

TYPE: str

first_name First name of the user.

TYPE: str

last_name Last name of the user.

TYPE: str

email Email address of the user.

TYPE: str

site Name of the site.

TYPE: str

password Password for the user.

TYPE: str

RETURNS DESCRIPTION

Dict[str, Any] Dict containing the user's information.

import os
from onyx import OnyxClient, OnyxEnv

registration = OnyxClient.register(
domain=os.environ[OnyxEnv.DOMAIN],
first_name="Bill",
last_name="Will",
email="bill@email.com",
site="site",
password="pass123",

)

>>> registration
{

"username": "onyx-willb",
"site": "site",
"email": "bill@email.com",
"first_name": "Bill",
"last_name": "Will",

}

RETURNS DESCRIPTION

Dict[str, Any] Dict containing the user's authentication token and it's expiry.

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],

1.5.1 OnyxClient

- 45/55 -

logout()

Log out the user.

Examples:

logoutall()

Log out the user in all clients.

Examples:

profile()

View the user's information.

Examples:

username=os.environ[OnyxEnv.USERNAME],
password=os.environ[OnyxEnv.PASSWORD],

)

with OnyxClient(config) as client:
token = client.login()

>>> token
{

"expiry": "2024-01-01T00:00:00.000000Z",
"token": "abc123",

}

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
client.logout()

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
client.logoutall()

RETURNS DESCRIPTION

Dict[str, str] Dict containing the user's information.

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
profile = client.profile()

>>> profile
{

"username": "user",
"site": "site",
"email": "user@email.com",

}

1.5.1 OnyxClient

- 46/55 -

activity()

View the user's latest activity.

Examples:

approve(username)

Approve another user.

Examples:

RETURNS DESCRIPTION

List[Dict[str, Any]] List of the user's latest activity.

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
activity = client.activity()

>>> activity
[

{
"date": "2023-01-01T00:00:00.000000Z",
"address": "127.0.0.1",
"endpoint": "/projects/project/",
"method": "POST",
"status": 400,
"exec_time": 29,
"error_messages" : "b'{"status":"fail","code":400,"messages":{"site":["Select a valid choice."]}}'",

},
{

"timestamp": "2023-01-02T00:00:00.000000Z",
"address": "127.0.0.1",
"endpoint": "/accounts/activity/",
"method": "GET",
"status": 200,
"exec_time": 22,
"error_messages": "",

},
]

PARAMETER DESCRIPTION

username Username of the user to be approved.

TYPE: str

RETURNS DESCRIPTION

Dict[str, Any] Dict confirming user approval success.

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
approval = client.approve("waiting_user")

>>> approval
{

"username": "waiting_user",
"is_approved": True,

}

1.5.1 OnyxClient

- 47/55 -

waiting()

Get users waiting for approval.

Examples:

site_users()

Get users within the site of the requesting user.

Examples:

all_users()

Get all users.

Examples:

RETURNS DESCRIPTION

List[Dict[str, Any]] List of users waiting for approval.

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
users = client.waiting()

>>> users
[

{
"username": "waiting_user",
"site": "site",
"email": "waiting_user@email.com",
"date_joined": "2023-01-01T00:00:00.000000Z",

}
]

RETURNS DESCRIPTION

List[Dict[str, Any]] List of users within the site of the requesting user.

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config):
users = client.site_users()

>>> users
[

{
"username": "user",
"site": "site",
"email": "user@email.com",

}
]

RETURNS DESCRIPTION

List[Dict[str, Any]] List of all users.

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient

1.5.1 OnyxClient

- 48/55 -

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
users = client.all_users()

>>> users
[

{
"username": "user",
"site": "site",
"email": "user@email.com",

},
{

"username": "another_user",
"site": "another_site",
"email": "another_user@email.com",

},
]

1.5.1 OnyxClient

- 49/55 -

1.5.2 OnyxConfig

Class for storing information required to connect/authenticate with Onyx.

__init__(domain, token=None, username=None, password=None)

Initialise a config.

This object stores information required to connect and authenticate with Onyx.

A domain must be provided, alongside an API token and/or the username + password.

Examples:

Create a config using environment variables for the domain and an API token:

Or using environment variables for the domain and login credentials:

DEFAULT: None

DEFAULT: None

DEFAULT: None

PARAMETER DESCRIPTION

domain Domain for connecting to Onyx.

TYPE: str

token Token for authenticating with Onyx.

TYPE: Optional[str]

username Username for authenticating with Onyx.

TYPE: Optional[str]

password Password for authenticating with Onyx.

TYPE: Optional[str]

import os
from onyx import OnyxConfig, OnyxEnv

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

import os
from onyx import OnyxConfig, OnyxEnv

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
username=os.environ[OnyxEnv.USERNAME],
password=os.environ[OnyxEnv.PASSWORD],

)

1.5.2 OnyxConfig

- 50/55 -

1.5.3 OnyxEnv

Class containing recommended environment variable names for Onyx.

If environment variables are created with these recommended names, then the attributes of this class can be used to access

them.

These attributes and the recommended environment variable names are:

Examples:

In the shell, create the following environment variables with your credentials:

Then access them in Python to create an OnyxConfig object:

OnyxEnv.DOMAIN = "ONYX_DOMAIN"
OnyxEnv.TOKEN = "ONYX_TOKEN"
OnyxEnv.USERNAME = "ONYX_USERNAME"
OnyxEnv.PASSWORD = "ONYX_PASSWORD"

$ export ONYX_DOMAIN="https://onyx.example.domain"
$ export ONYX_TOKEN="example-onyx-token"
$ export ONYX_USERNAME="example-onyx-username"
$ export ONYX_PASSWORD="example-onyx-password"

import os
from onyx import OnyxEnv, OnyxConfig

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],
username=os.environ[OnyxEnv.USERNAME],
password=os.environ[OnyxEnv.PASSWORD],

)

1.5.3 OnyxEnv

- 51/55 -

1.5.4 OnyxField

Class that represents a single field-value pair for use in Onyx queries.

__init__(**kwargs)

Initialise a field.

Takes a single key-value argument as input.

The key corresponds to a field (and optional lookup) to use for filtering.

The value corresponds to the field value(s) that are being matched against.

OnyxField instances can be combined into complex expressions using Python's bitwise operators: & (AND), | (OR), ^ (XOR), and ~

(NOT).

Multi-value lookups (e.g. in , range) support passing a Python list as the value. These are coerced into comma-separated strings

internally.

Examples:

Create OnyxField objects and combine them using Python bitwise operators:

DEFAULT: {}

PARAMETER DESCRIPTION

**kwargs Keyword arguments containing a single key-value pair.

TYPE: Any

Notes

•

•

•

•

•

from onyx import OnyxField

field1 = OnyxField(field1="value1")
field2 = OnyxField(field2__contains="value2")

expression = (field1 | field2) & OnyxField(
published_date__range=["2023-01-01", "2023-01-02"]

)

>>> field1
<onyx.field.OnyxField object at 0x1028eb850>
>>> field2
<onyx.field.OnyxField object at 0x1028eb850>
>>> expression
<onyx.field.OnyxField object at 0x103b6fc40>
>>> field1.query
{"field1": "value1"}
>>> field2.query
{"field2__contains": "value2"}
>>> expression.query
{

"&": [
{"|": [{"field1": "value1"}, {"field2__contains": "value2"}]},
{"published_date__range": "2023-01-01,2023-01-02"},

]
}

1.5.4 OnyxField

- 52/55 -

1.5.5 Exceptions

OnyxError

Bases: Exception

Generic class for all Onyx exceptions.

OnyxConfigError

Bases: OnyxError

Config validation error.

This error occurs due to validation failures when initialising an OnyxConfig object.

Examples:

A domain was not provided.

Neither a token or valid login credentials (username and password) were provided.

OnyxClientError

Bases: OnyxError

Client validation error.

This error occurs due to validation failures within an OnyxClient object, and not due to error codes returned by the Onyx API.

Examples:

Incorrect types were provided to OnyxClient methods.

Empty strings were provided for required arguments such as the climb_id , creating an invalid URL.

Empty CSV/TSV files are provided on OnyxClient.csv_create , OnyxClient.csv_update , or OnyxClient.csv_delete .

CSV/TSV files with more than one record are provided to OnyxClient.csv_create , OnyxClient.csv_update , or OnyxClient.csv_delete

when multiline = False .

One counter-intuitive cause of this error is when an OnyxClient.get request using fields returns more than one result.

This is not an OnyxRequestError because for this particular combination of parameters, an underlying call to the OnyxClient.filter

method is made.

The request to the Onyx API may be successful, but return more than one record. However, the OnyxClient.get method expects a

single record, resulting in the error being raised.

This behaviour may change in the future.

OnyxFieldError

Bases: OnyxError

Field validation error.

This error occurs due to validation failures within the OnyxField class.

•

•

•

•

•

•

Notes

•

•

•

•

1.5.5 Exceptions

- 53/55 -

Examples:

The user did not provide exactly one key-value pair on initialisation.

An attempt was made to combine an OnyxField instance with a different type.

The structure of the underlying OnyxField.query is somehow incorrect.

OnyxConnectionError

Bases: OnyxError

Onyx connection error.

This error occurs due to a failure to connect to the Onyx API.

This error occurs due to any subclass of requests.RequestException (excluding requests.HTTPError) being raised.

For more information, see: https://requests.readthedocs.io/en/latest/api/#requests.RequestException

OnyxHTTPError

Bases: OnyxError

Onyx HTTP error.

This error occurs due to a request to the Onyx API either failing (code 4xx) or causing a server error (code 5xx).

This error occurs due to a requests.HTTPError being raised.

Like the requests.HTTPError class, instances of this class have a response object containing details of the error.

For more information on the response object, see: https://requests.readthedocs.io/en/latest/api/#requests.Response

Examples:

OnyxRequestError

Bases: OnyxHTTPError

Onyx request error.

This error occurs due to a failed request to the Onyx API (code 4xx).

•

•

•

Notes

•

•

Notes

•

•

•

import os
from onyx import OnyxConfig, OnyxEnv, OnyxClient, OnyxField
from onyx.exceptions import OnyxHTTPError

config = OnyxConfig(
domain=os.environ[OnyxEnv.DOMAIN],
token=os.environ[OnyxEnv.TOKEN],

)

with OnyxClient(config) as client:
try:

records = list(
client.query(

project="project",
query=(

OnyxField(field1="abcd")
& OnyxField(published_date__range=["2023-01-01", "2023-01-02"])

),
)

)
except OnyxHTTPError as e:

print(e.response.json())

1.5.5 Exceptions

- 54/55 -

https://requests.readthedocs.io/en/latest/api/#requests.RequestException
https://requests.readthedocs.io/en/latest/api/#requests.Response

Examples:

Invalid field names or field values (400 Bad Request).

Invalid authentication credentials (401 Unauthorized).

A request was made for something which the user has insufficient permissions for (403 Forbidden).

An invalid project / CLIMB ID / anonymised value was provided (404 Not Found).

An invalid HTTP method was used (405 Method Not Allowed).

OnyxServerError

Bases: OnyxHTTPError

Onyx server error.

This error occurs due to a request to the Onyx API causing a server error (code 5xx).

Server errors are unintended and should be reported to an admin if encountered.

•

•

•

•

•

Warning

1.5.5 Exceptions

- 55/55 -

	Onyx | CLI & Python API
	1. CLI & Python API
	1.1 CLI & Python API for Onyx
	1.1.1 Introduction
	1.1.2 Contents
	Command-line Interface
	Python API

	1.2 Installation
	1.2.1 Install from conda-forge
	1.2.2 Install from PyPI
	1.2.3 Build from source
	Developing the Client

	1.3 Accessibility
	1.3.1 Enable/disable colours in the command-line interface

	1.4 Command-line Interface
	1.4.1 Getting Started
	Profile information
	Available projects
	Project fields
	Project data
	Filtering
	Advanced filtering using lookups
	Examples

	Further guidance

	1.4.2 onyx
	onyx projects
	onyx types
	onyx lookups
	onyx fields
	onyx choices
	onyx get
	onyx filter
	onyx history
	onyx analyses
	onyx identify
	onyx create
	onyx update
	onyx delete
	onyx analysis-fields
	onyx analysis-choices
	onyx get-analysis
	onyx filter-analysis
	onyx analysis-history
	onyx analysis-records
	onyx create-analysis
	onyx update-analysis
	onyx delete-analysis
	onyx profile
	onyx activity
	onyx siteusers
	onyx auth
	onyx auth register
	onyx auth login
	onyx auth logout
	onyx auth logoutall

	onyx admin
	onyx admin waiting
	onyx admin approve
	onyx admin allusers

	1.5 Python API
	1.5.1 OnyxClient
	__init__(config)
	projects()
	types()
	lookups()
	fields(project)
	choices(project, field)
	get(project, climb_id=None, fields=None, include=None, exclude=None)
	filter(project, fields=None, include=None, exclude=None, summarise=None, **kwargs)
	query(project, query=None, include=None, exclude=None, summarise=None)
	to_csv(csv_file, data, delimiter=None) classmethod
	history(project, climb_id)
	analyses(project, climb_id)
	identify(project, field, value, site=None)
	create(project, fields, test=False)
	update(project, climb_id, fields=None, test=False, clear=None)
	delete(project, climb_id)
	csv_create(project, csv_file, fields=None, delimiter=None, multiline=False, test=False)
	csv_update(project, csv_file, fields=None, delimiter=None, multiline=False, test=False)
	csv_delete(project, csv_file, delimiter=None, multiline=False)
	analysis_fields(project)
	analysis_choices(project, field)
	get_analysis(project, analysis_id=None, fields=None, include=None, exclude=None)
	filter_analysis(project, fields=None, include=None, exclude=None, summarise=None, **kwargs)
	analysis_history(project, analysis_id)
	analysis_records(project, analysis_id)
	create_analysis(project, fields, test=False)
	update_analysis(project, analysis_id, fields=None, test=False, clear=None)
	delete_analysis(project, analysis_id)
	register(domain, first_name, last_name, email, site, password) classmethod
	login()
	logout()
	logoutall()
	profile()
	activity()
	approve(username)
	waiting()
	site_users()
	all_users()

	1.5.2 OnyxConfig
	__init__(domain, token=None, username=None, password=None)

	1.5.3 OnyxEnv
	1.5.4 OnyxField
	__init__(**kwargs)

	1.5.5 Exceptions
	OnyxError
	OnyxConfigError
	OnyxClientError
	OnyxFieldError
	OnyxConnectionError
	OnyxHTTPError
	OnyxRequestError
	OnyxServerError

